
The Thesis Committee for Yangxinyu Xie

Certifies that this is the approved version of the following Thesis:

Matrix Rigidity: A Survey

APPROVED BY

SUPERVISING COMMITTEE:

Anna Gál, Supervisor

Ngoc Mai Tran

1



Matrix Rigidity: A Survey

by

Yangxinyu Xie

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCES IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2022

2



Matrix Rigidity: A Survey

Yangxinyu Xie, M.S.C.S.

The University of Texas at Austin, 2022

Supervisor: Anna Gál

Since Valiant’s establishment of matrix rigidity to analyse circuit com-

plexity, various contributions to the bounds of matrix rigidity of special can-

didates has bloomed. In this thesis, we cover the following topics: existing

explicit and semi-explicit rigidity lower bounds for various families of matri-

ces, Paturi-Pudlák dimensions, rigid sets, connections between data structure

lower bounds and rigidity lower bounds and non-rigidity results.
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Chapter 1

Motivation and Definition

The definition of matrix rigidity was first introduced by Valiant [Val77].

Definition 1.0.1. The density of a matrix A is the number of nonzero ele-

ments drawn from a field F, denoted by dens(A).

Definition 1.0.2. The rigidity of a matrixA is the function RF
A(r) : {1, ..., n} →

{0, 1, ..., n2} defined by

RF
A(r) := min{i|∃ B, dens(B) = i, rank(A+B) ≤ r}

Valiant motivated the definition of matrix rigidity from the analysis

of circuit complexity and proved that if RF
A(εn) = n1+δ for some ε, δ > 0,

then the corresponding linear transformation x → Ax(which was called ”lin-

ear program” in the original paper) cannot be computed by circuits of size

O(n log log n) and depth O(log n).

With slight modifications of the original proof of the previous state-

ment, we have that if RF
A(n/ log log n) = n1+δ for some δ > 0, then the cor-

responding linear transformation x → Ax cannot be computed by circuits of

size O(n) and depth O(log n). In fact, the matrices satisfying

RF
A(n/ log log n) ≥ n1+δ

are later called ”Valiant-rigid” in recent papers [GT18, AC19, BHPT20].
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Moreover, Valiant gave a non-constructive proof for the following; that

is, a random matrix is rigid with high probability.

Theorem 1.0.1 ([Val77]). 1. For an infinite field F, for all n, there exists

a n× n matrix A such that RF
A(r) = (n− r)2.

2. For a finite field F with c elements, for all n, there exists a n×n matrix

A such that for all r < n−
√

2n logc 2 + log2 n,

RF
A(r) ≥ (n− r)2 − 2n logc 2− log2 n

2 logc n+ 1

The main challenge is to find explicit ”Valiant-rigid” matrices A satis-

fying

RF
A(n/ log log n) = n1+δ

which has remained a major barrier since it was first proposed in the 1970’s.

What do we mean by explicit? For a family of matrices {An}, we say that

it is explicit if for each n, given indices 1 ≤ i, j ≤ n, there is a Boolean

circuit of size polynomial in n to compute Aij. Explicit constructions of such

matrices lead to explicit problems that cannot be solved in O(n)-size O(log n)-

depth circuits. In this survey, we will review the past attempts and perennial

difficulties in tackling this challenge.
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Chapter 2

Explicit Lower Bounds

In this chapter, we will cover the past techniques for proving explicit

lower bounds of matrix rigidity. For explicit lower bounds, most of the proofs

consist of two steps: first, we show that most sub-matrices, also called minors,

of the given matrix M has large or full rank r; second, if RF
A(r) is small, we

are likely to get a sub-matrix that remains intact. The first step implies that

it is plausible to find rigid matrices with high regularity.

Definition 2.0.1 ([BCS97]). A matrix A is called totally regular if and only

if every minor of A is invertible.

A relaxation of this definition will suffice for our purpose.

Definition 2.0.2. A matrix A is called almost totally regular if and only

if every r × r minor of A has rank Ω(r).

Another notion of regularity based on expectation is introduced by

Pudlak [Pud94].

Definition 2.0.3 ([Pud94]). Let A be an n × n matrix, 0 ≤ ε, δ, η ≤ 1. We

say that A is (ε, δ, η)–densely regular, if for every k with ηn ≤ k ≤ n, there

are nonempty sets of k elements subset X,Y ⊆ {1, ..., n}k such that for every

i, j = 1, ..., n

δP[i ∈ X] ≤ k/n and δP[j ∈ Y ] ≤ k/n

9



where X ∈ X, Y ∈ Y are chosen with some probability distributions and such

that for random X ∈ X, Y ∈ Y the mean value of the rank of the matrix

determined by X and Y is at least εk.

Again, a relaxation of this will also be sufficient to us.

Definition 2.0.4 ([Che05]). Let A be an n × n matrix. We say that A is

ε-densely regular, if there is a constant 0 < ε < 1 such that for every k with

0 ≤ k ≤ n, a k × k minor of A picked uniformly at random has an expected

rank at least εk.

However, as pointed out by Lokam [Lok00], any proof relying on the

second step cannot produce a lower bound better than Ω((n2/r) log(n/r)).

Moreover, due to the existence of linear size superconcentrators, the first step

is far from sufficient to show a desirable rigidity.

Proposition 2.0.1 ([Val77]). For each n there is an n × n totally regular

matrix A such that

RF
A(
n log log log n

log log n
) ≤ n1+O( 1

log logn
)

Nevertheless, finding explicit matrices with high regularity is still a

reasonable start.

2.1 Totally Regular Matrices

Recall that a matrix A is called totally regular if and only if every

minor of A is invertible. The following combinatorial lemma, along with its

corollary, says that if not many changes are made to the matrix A, then there

10



will be a large enough submatrix that remains intact. If A is totally regular,

then the intact submatrix, or ”untouched minor”, will have full rank. With

this result at hand, it remains to find families totally regular matrices, which

include Cauchy matrices, Fourier transform matrices and generator matrices

of asymptotically good codes [SSS97, Lok00]. The proofs of this section are

mainly taken from [Lok09].

Lemma 2.1.1 ([SSS97]). If fewer than

µ(n, r) = (n− r + 1)(n− (r − 1)1/rn1−1/r)

entries of an n× n matrix A is marked, then there is an r × r submatrix that

remains intact.

Proof. Think of A as the adjacency matrix of a bipartite graph Gn,n which

contains an edge (i, j) if and only if Ai,j has not been marked. Hence, having

an r× r submatrix that remains intact is equivalent to having a Kr,r complete

bipartite subgraph in Gn,n. Hence, we have that Gn,n cannot have more than

n2 − µ(n, r) edges, or it will contain a Kr,r complete bipartite subgraph (see

[Juk11], Theorem 2.10).

Corollary 2.1.2. Let r ≥ log2 n and let n be sufficiently large. If fewer than

n(n− r + 1)

2r
log

n

r − 1

changes are made to an n× n matrix A, then there exists an r × r submatrix

that remains intact.

It is easy to see that if any r× r minor has rank Ω(r), we have that the

rigidity of A is Ω(n
2

r
log n

r
).
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2.1.1 Cauchy Matrix

Definition 2.1.1. Let x1, ..., xn, y1, ..., yn be elements of a field Fn with the

property that∏
i 6=j

(xi − xj) 6= 0,
∏
i 6=j

(yi − yj) 6= 0,
∏
i,j

(xi + yj) 6= 0

we define the Cauchy matrix by

C :=
( 1

xi + yj

)
1≤i,j≤n

Hence, for every 1 ≤ r ≤ n, each of its r × r-submatrix has the deter-

minant ∏
i 6=j(xi − xj)

∏
i 6=j(yi − yj)∏

i,j(xi + yj)

which is nonzero. In other words, the Cauchy matrix is totally regular.

The following theorem is thus a direct result of Corollary 2.1.2.

Theorem 2.1.3 ([SSS97]). Let Fn be a sequence of fields and let (Cn) be a

sequence of Cauchy matrices where Cn ∈ Fn×nn . Then if log2 n ≤ r ≤ n/2, we

have

RFn
Cn

(r) ≥
(n2

4r
log

n

r − 1

)

2.1.2 Fourier Transform Matrix

Another type of totally regular matrices is the discrete Fourier trans-

form matrices. Hence, the following result is also a direct consequence of

Corollary 2.1.2.

Theorem 2.1.4 ([Lok00, Lok09]). Let F = (ωj−1
i )n−1

i,j=0, where ω is a primitive

nth root of unity. Then, as n ranges over all prime numbers and log2 n ≤ r ≤

12



n/2,

RF (r) ≥ n2

4(r + 1)
log

n

r

2.1.3 Asymptotically Good Error Correcting Codes

The existence of asymptotically good error correcting codes is a corol-

lary of the Tsfasman-Vladut-Zink Bound [TVZ82], whose statements and

proofs are not presented here; we refer the reader to [Lok09] for more de-

tails. We simply use the following claim as given and show an explicit lower

bound of matrix rigidity.

Claim 2.1.1. For infinitely many n, there exists a [2n, n, d]-code with d ≥
(1− ε)n where ε = 2/(

√
q − 1).

For a given n, let Γ be the [2n, n, d]-code as in Claim 2.1.1, whose

generator matrix has the form (In|A) where In is the n× n identity matrix.

Theorem 2.1.5 ([SSS97]). Let A be an n× n matrix as defined above. Then,

for max(log2 n, εn) ≤ r ≤ n/4,

R
Fq
A (r) ≥ n2

8r
log

n

2r − 1

Proof. We first show that for all 2r× 2r submatrix of A, the rank must be at

least r. Suppose on the contrary, then let B be a 2r× 2r submatrix of A with

r dependent rows. Then a linear combination of these r rows of the generator

matrix gives a code word of weight

r + n− 2r = n− r ≤ (1− ε)n− 1 ≤ d

where the first r comes from the identity matrix and the n − 2r comes from

the fact that these r rows are dependent. Hence, we reach a contradiction.

By Corollary 2.1.2, we obtain the desired result.
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2.2 Densely Regular Matrices

Recall the definition of densely regular matrices:

Definition 2.2.1 ([Pud94]). Let A be an n × n matrix, 0 ≤ ε, δ, η ≤ 1. We

say that A is (ε, δ, η)–densely regular, if for every k with ηn ≤ k ≤ n, there

are nonempty sets of k elements subset X,Y ⊆ {1, ..., n}k such that for every

i, j = 1, ..., n

δP[i ∈ X] ≤ k/n and δP[j ∈ Y ] ≤ k/n

where X ∈ X, Y ∈ Y are chosen with some probability distributions and such

that for random X ∈ X, Y ∈ Y the mean value of the rank of the matrix

determined by X and Y is at least εk.

The following theorem shows are densely regular matrices are Ω(n2/r)

rigid. In fact, a similar proof can be applied to show that ε-densely regular

matrices are Ω(n2/r) rigid, which we omit here. Notice that this rigidity bound

is weaker than that given by totally regular matrices. For the remainder of

this section, we show that Vandermonde matrices and Hadamard matrices are

densely regular, and thus Ω(n2/r) rigid.

Theorem 2.2.1 ([Pud94]). For every positive ε, δ, η, 0 < ε, δ, η ≤ 1, any field

F, and any n× n (ε, δ, η)–densely regular matrix A,

RF
A(r) = Ω(n2/r)

for εηn/2 ≤ r ≤ εn/2

Proof. Let εηn/2 ≤ r ≤ εn/2 and sets X,Y be given and set k = d2r/εe. For

random variables X ∈ X, Y ∈ Y,, we have that for a coordinate (i, j),

P[(i, j) ∈ X × Y ] ≤ k2

δ2n2

14



Let Z be the minimal set of coordinates changed to reduce the rank of A to r

and let z be the number of coordinates in the set Z ∩ (X ×Y ). Then, we have

E[z] =
∑

(i,j)∈Z

P[(i, j) ∈ X × Y ] ≤ |Z| k
2

δ2n2

Notice that on the other hand, the mean value of the rank of the matrix

determined by X and Y is at least εk, which implies

E[z] ≥ εk − r ≥ 2r − r = r

Therefore, we have

r ≤ E[z] ≤ |Z| k
2

δ2n2

and thus by plugging k = d2r/εe

|Z| ≥ rδ2n2

k2
= Ω(

n2

r
)

2.2.1 Vandermonde Matrix

Proposition 2.2.2 ([Pud94]). Let V = (xj−1
i )ni,j=1 be a Vandermonde matrix

with distinct xi over some field. V is (1, 1/2, 0)-densely regular.

Proof. Let k ≤ n be given and l = bn/kc. We define X as the set of sets of the

form

{a, a+ l, a+ 2l, ..., a+ (k − 1)l}

where 1 ≤ a ≤ l. Let X be uniformly distributed on X. This gives us

P[i ∈ X] ≤ 1

l
≤ 2k

n

We also let Y be defined in the same way. This gives us δ = 1/2. Notice that

any minor of a Vandermonde matrix is full rank, which means ε = 1.

15



By theorem 2.2.1, we prove the Ω(n2/r) lower bound for Vandermonde

matrices. An alternative proof is given by Shparlinsky, which we will present

later (see Theorem 2.3.1.)

2.2.2 Hadamard Matrix

A matrix H = (hi,j) ∈ Cn×n is a (generalised) Hadamard matrix if

|hi,j| = 1 for all i, j ∈ [n] and the rows of H are pairwise orthogonal. In this

section, we present the lower bound by Razborov [KR98], whose proof took

advantages of singular value decomposition and Frobenius norm. Before that,

let’s introduce some definitions.

Definition 2.2.2. A matrix H = (hi,j) ∈ Cn×n is called a (generalised)

Hadamard matrix if |hi,j| = 1 for all i, j ∈ [n] and HH∗ = nIn where H∗ is

the conjugate transpose of H and In is the n× n identity matrix.

Definition 2.2.3. The Frobenius norm of a matrix A ∈ Cn×n is

||A||F :=
(∑

i,j

|ai,j|2
)1/2

Definition 2.2.4. The trace of a matrix A ∈ Cn×n is the sum of its eigen-

values:

Tr(A) =
n∑
i=1

λi(A)

Definition 2.2.5. The ith singular value σi(A) is defined by

σi(A) :=
√
λi(AA∗), 1 ≤ i ≤ n

where λi denotes the ith largest eigenvalue of AA∗.

We recall some fact about singular value decomposition and Frobenius

norm. The proof can be found in chapter 2.4 in [GVL12].
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Proposition 2.2.3. For any matrix A ∈ Cn×n,

• there exists unitary matrices U, V ∈ Cn×n such that

U∗AV = diag(σ1(A), σ2(A), ..., σn(A))

• ||A||2F = σ2
1(A) + σ2

2(A) + ...+ σ2
n(A).

Proposition 2.2.4. If A ∈ Rn×n is symmetric, then

Tr(A)2

||A||2F
≤ rank(A)

Proof. Let B = AA∗. Notice that

Tr(B) =
n∑
i=1

λi(B) = ||A||2F

Because A is symmetric,

n∑
i=1

λi(B) = Tr(B) =
n∑
i=1

λi(A
2) =

n∑
i=1

λ2
i (A)

Moreover, B has only rank(B) =rank(A) non-zero eigenvalues, which are all

positive. Assume without loss of generality λ2
1(A) ≥ λ2

2(A) ≥ ... ≥ λ2
n(A).

Then,
∑n

i=1 λ
2
i (A) =

∑rank(A)
i=1 λ2

i (A). Hence, by Cauchy-Schwarz inequality,

we have

||A||2F =

rank(A)∑
i=1

λ2
i (A) ≥

(∑rank(A)
i=1 λi(A)

)2

rank(A)
≥ Tr(A)2

rank(A)

Proposition 2.2.5 ([KR98]). Let H be an n×n generalised Hadamard matrix.

Let G be a random q×n submatrix of H and let A be a random q×q submatrix

of G. Then E[rank(A)] ≥ r/8.
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Proof. Let B = AA∗. Then B is a positive definite symmetric matrix in Rq×q.

Recall that hi,j = 1, which implies all entries of B on the main diagonal equals

to q. Thus Tr(B) = q2. By proposition 2.2.4, we obtain that rank(A) ≤ r for

some positive integer r implies

||B||2F ≥
Tr(B)2

rank(B)
≥ q4

r

Let

εj =

{
1 if the jth column of H is in H0

0 otherwise

we have

E[εj1εj2 ] =

{
q
n

if j1 = j2
q(q−1)
n(n−1)

if j1 6= j2

Now, notice that bi,j =
∑q

k=1 ai,ka
∗
j,k =

∑q
k=1 gi,kg

∗
j,kεk and b∗i,j =

∑q
l=1 a

∗
i,laj,l =∑q

k=1 gi,kg
∗
j,kεl

||B||2F =
∑

1≤i,j≤q

|bi,j|2 =
∑

1≤i,j≤q

bi,jb
∗
i,j =

∑
1≤i≤q,1≤j≤n

∑
1≤k,l≤q

gi,kgj,kg
∗
i,lg
∗
j,lεkεl

=
∑

1≤k,l≤q

(
εkεl

∑
1≤i≤q,1≤j≤n

gi,kgj,kg
∗
i,lg
∗
j,l

)
Thus,

E[||B||2F ] =
∑

1≤k,l≤q

(
E[εkεl]

∑
1≤i≤q,1≤j≤n

gi,kgj,kg
∗
i,lg
∗
j,l

)
=
q(q − 1)

n(n− 1)

∑
1≤k,l≤q

∑
1≤i≤q,1≤j≤n

gi,kgj,kg
∗
i,lg
∗
j,l +

( q
n
− q(q − 1)

n(n− 1)

) ∑
1≤i≤q,1≤j≤n

gi,kgj,kg
∗
i,lg
∗
j,l

=
q(q − 1)

n(n− 1)
||GG∗||2F +

( q
n
− q(q − 1)

n(n− 1)

) q∑
k=1

∑
1≤i≤q,1≤j≤n

gi,kg
∗
i,kgj,kg

∗
j,k

18



Notice that GG∗ = nIq where Iq is the q × q identity matrix.

E[||B||2F ] =
q(q − 1)

n(n− 1)
||GG∗||2F +

( q
n
− q(q − 1)

n(n− 1)

) q∑
k=1

∑
1≤i≤q,1≤j≤n

gi,kg
∗
i,kgj,kg

∗
j,k

=
q(q − 1)

n(n− 1)
n2q2 +

( q
n
− q(q − 1)

n(n− 1)

)
nq2

= q2(q + (n− q) q − 1

n− 1
) ≤ 2q3

By Chebyshev’s inequality, we have

P[||B||2F ≥
q4

r
] ≤ r

q4
E[||B||2F ] ≤ 2r

q

Thus, we have P[rank(A) ≤ r] ≤ P[||B||2F ≥
q4

r
] ≤ 2r/q. Choosing r = q/4, we

have P[rank(A) ≤ q/4] ≤ 1/2. Again, using Chebyshev’s inequality,

E[rank(A)] ≥ q

4
P[rank(A) ≥ q

4
] =

q

4
(1− P[rank(A) ≥ q

4
]) ≥ q

8

Corollary 2.2.6. Let H be an n×n generalised Hadamard matrix, then H is

1/8-densely regular.

2.3 Averaging Argument

Another set of proofs utilises averaging argument. The averaging argu-

ment says that if we partition the matrix into equally sized parts, there is at

least one part that won’t have too many changes. For example, we can use this

argument to select some number of rows that has small changes and then show

that the remaining part of these rows has high rank. In this section, we show

how this is used for Vandermonde matrices (Theorem 2.3.1) and Hadamard

matrices (Corollary 2.3.5).
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2.3.1 Vandermonde Matrix

Theorem 2.3.1 (Shparlinsky, see [Lok00]). Let V = (xj−1
i )ni,j=1 be a Vander-

monde matrix with distinct xi over some field. Then

RV (r) ≥ (n− r)2

r + 1

Proof. Let r be given and let s = RV (r). By averaging argument, we can

select r+ 1 consecutive columns such that the total number of changes within

these columns are at most s(r + 1)/(n − r). Then we select the rows that

do not contain any changes in these these columns, which gives us at least

n − s(r + 1)/(n − r) rows. Hence, we constructed a submatrix S of size

(r+ 1)× (n− s(r+ 1)/(n− r)). Because the rank of this submatrix is at most

r, we have that there exists a nonzero vector g such that Sg = 0. In other

words, we obtain a polynomial
∑r

t=0 gtx
t = 0 with at least n−s(r+1)/(n−r)

roots. On the other hand, this polynomial can have at most r roots. Therefore,

r ≥ n− s(r + 1)/(n− r)

which gives s ≥ (n− r)2/(r + 1).

2.3.2 Hadamard Matrix

In this section, we present three different proofs for Hadamard matrices.

The first two relies on some results from spectral matrix theory of Hadamard

matrices, while the last one is a simple proof with a clever use of the aver-

aging argument. First we note that every non-trivial linear combination of a

Hadamard matrix has many nonzero entries.

Proposition 2.3.2 (Alon, see [Juk11]). Every non-trivial linear combination

of any k rows of a Hadamard matrix H = (hi,j) ∈ Cn×n has at least n/k

nonzero entries.
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Proof. Let A be a k × n submatrix of H and let y = xTA for some nonzero

vector x ∈ Rk. Let S be the set of the coordinates of the non-zero entries in

y and let s = |S|. We need to show that s ≥ n/k.

Assume without loss of generality that x1 = maxi∈[k] |xi|. Let ai denote the

ith row of A. Because the rows of A are mutually orthogonal, we have

kx2
1n ≥

k∑
i=1

x2
in =

k∑
i=1

〈xiai, xiai〉 = 〈
k∑
i=1

xia
i,

k∑
i=1

xia
i〉

Notice that
∑k

i=1 xia
i = xTA = y, we have

〈
k∑
i=1

xia
i,

k∑
i=1

xia
i〉 = 〈y, y〉 =

n∑
j=1

y2
j =

n∑
j=1

y2
j =

∑
j∈S

y2
j =

∑
j∈S

|yj|2

Using Cauchy-Schwarz inequality, we have∑
j∈S

|yj|2 ≥
1

s
(
∑
j∈S

|yj|)2 =
1

s
(
n∑
j=1

|yj|)2

On the other hand, because |ai,j| = 1, we have

n∑
j=1

|yj| ≥
n∑
j=1

yja1,j =
n∑
j=1

〈x, aj〉a1,j =
n∑
j=1

k∑
i=1

xiai,ja1,j

=
k∑
i=1

xi

n∑
j=1

ai,ja1,j =
k∑
i=1

xi〈ai, a1〉 = x1〈a1, a1〉 = x1n

This gives us

kx2
1n ≥

1

s
(x1n)2

Thus, s ≥ n/k.

Now we are ready to present to first proof.

Corollary 2.3.3 (Alon, see [Juk01]). If t > (1 − 1/r)n, then every r × t

sub-matrix H ′ of an n× n Hadamard matrix H ∈ Rn×n has rank r.
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Proof. For the sake of contradiction, we assume the opposite that rank(H ′) <

r. Hence, there exists a nonzero vector x ∈ Rr such that xtH ′ = 0. Because

t > (1− 1/r)n, this contradicts with proposition 2.3.2 that any nonzero linear

combination of these r rows of H has at least n/r nonzero entries.

Corollary 2.3.4 (Alon, see [Juk01]). If fewer than (n/r)2 entries of an n×n

Hadamard matrix H ∈ Rn×n are changed, then the rank of the resulting matrix

remains at least r.

Proof. By averaging argument, we can choose (n/r) rows that has fewer than

(n/r) changes in total. Therefore, the number of columns that remain intact

in these (n/r) rows is greater than (1 − 1/r)n. By 2.3.3, we complete the

proof.

The second proof utilizes a clever observation of the rank of submatrices

of Hadamard matrices, which is, in effect, the regularity of Hadamard matrices.

Lemma 2.3.5 ([Lok95]). For any u× v submatrix H0 if an n× n generalised

Hadamard matrix H, rank(H0) ≥ uv/n.

Proof. Let A ∈ Ck×k for some k > 0. Let λ1(A) be the largest eigenvalue of

AA∗. We thus have
||A||2F
λ1(A)

=

∑n
i=1 λi(A)

λ1(A)

Notice that AA∗ has exactly rank(AA∗) =rank(A) nonzero entries, all of which

are positive, which implies

||A||2F
λ1(A)

=

∑
i∈[n],λi(A)>0 λi(A)

λ1(A)
≤ rank(A)
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On the other hand, H0 is a submatrix of H, we have λ1(H0) ≤ λ1(H). Thus

||H0||2F
λ1(H0)

≥ ||H0||2F
λ1(H)

=
uv

n

Notice that the last equality follows from the fact that H0H
∗
0 = vIu. Therefore,

we have rank(H0) ≥ ||H0||2F/λ1(H0) ≥ uv/n.

Theorem 2.3.6 ([dW06]). If r ≤ n/2, then RH(r) ≥ n2/4r.

Proof. Let r be given and let s = RH(r). By averaging argument, we can select

2r rows that has fewer than 2rs/n changes. If 2rs/n ≥ n, we have s ≥ n2/(2r)

and we are done. If 2rs/n < n, we then have that by lemma 2.3.5, for the

submatrix H0 that contains the n− 2rs/n intact columns of these 2r rows,

r ≥ rank(H0) ≥ 2r(n− 2rs/n)

n

which implies s ≥ n2/4r.

The same bound can be proved with a much simpler argument for a

special type of Hadamard matrices called the Sylvester matrix, which is

recursively defined as follows:

• S1 := (1).

• S2n :=

[
1 1
1 −1

]
⊗ Sn =

[
Sn Sn
Sn −Sn

]
where ⊗ denotes the Kronecker product.

Theorem 2.3.7 ([Mid05]). Let n be a power of 2. If S ∈ Fn×n is a Sylvester

matrix and r ≤ n/2 is a power of 2, then

RS(r) ≥ n2

4r
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Proof. Let r be given and let s = RS(r). Assume on the contrary that s <

n2/4r. If we divide S into (n/2r)2 grids of size 2r × 2r, then by averaging

argument, there exists a grid that has fewer than

s · (2r)2

n2
<
n2

4r
· (2r)2

n2
= r

changes. Notice that each grid has full rank because it is exactly a Sylvester

matrix of size 2r× 2r. Then this grid still has rank more than 2r− r = r after

these r changes. Hence, the rank of S after these s changes will be more than

r, which gives us a contradiction.

Remark 2.3.1. Notice that this simple proof can be applied to any totally

regular matrices, for example, the discrete Fourier transform matrices. In the

next chapter, we will see that a similar argument is also useful for Hankel

matrices (Section 3.2.2).
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Chapter 3

Semi-Explicit Lower Bounds

As we saw in the last chapter, the purely combinatorial techniques fail

to achieve the desired explicit lower bounds. In the past few decades, people

began to explore various tools to construct rigid matrices, though not explicit.

Some involves exploitation of algebraic structures [Lok00, Lok06, KLPS14],

some introduces some randomness [GT18] and a more modern line of work

applies probabilistically checkable proofs [AC19, BHPT20].

3.1 Exploiting Algebraic Structures

Algebraic arguments have been successful in yielding quadratic lower

bounds Ω(n2) for suitable target rank r. All such arguments exploit some

notion of ”independence.” Moreover, it is unclear how to efficiently find these

”independent” elements, thus making the construction only semi-explicit. As

the following results rely on technically involved tools from algebra and the

theory of field extensions, we omit the proofs here and refer the reader to the

cited references.

The construction of Vandermonde matrices with Ω(n2) rigidity exploits

algebraic independence.

Definition 3.1.1 ([Mor96]). Let K be a field extension of F, and let t1, ..., tn ∈

K. The set {t1, ..., tn} is algebraically independent over F if f(t1, ..., tn) 6= 0
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for all nonzero polynomials f ∈ F[x1, ..., xn].

Theorem 3.1.1 ([Lok00]). Let V = (xj−1
i )ni,j=1 be a Vandermonde matrix

where xi are algebraically independent over Q. Then

RV (r) ≥ n(n− cr2)

2

where c > 0 is an absolute constant.

The following theorem constructs a matrix using entries from the com-

plex field, with every product of any nr distinct entries being linearly inde-

pendent over the rational field. However, it is unknown how we can find these

numbers efficiently.

Theorem 3.1.2 ([Lok06]). Let A be an n× n matrix over C and 0 ≤ r ≤ n.

Suppose all products of nr distinct entries of A are linearly independent over

Q. Then,

RA(r) ≥ n(n− 16r)

The next result could be obtained using elimination theory from alge-

braic geometry, but finding distinct primes efficiently remains a computational

challenge. Intuitively, the roots of unity of orders of distinct primes can be

viewed as somewhat ”independent” of each other.

Theorem 3.1.3 ([KLPS14]). Let pi,j > n4n2
be distinct primes for 1 ≤ i, j ≤

n. Let K = Q[ζ1,1, ..., ζn,n] be an extension field where ζi,j = e2πi/pi,j . Let

A = (ζi,j) ∈ Kn×n. Then for any field L containing K, we have

RA(r) ≥ (n− r)2
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3.2 Random Hankel Matriches

We say that H ∈ Fn×n2 is a Hankel matrix if Hij = hi+j−1 for some

h1, h2, ..., h2n−1. That is

H =


h1 h2 ... hn
h2 h3 ... hn+1
...

...
. . .

...
hn hn+1 ... h2n−1


H is a random Hankel matrix if h1, h2, ..., h2n−1 are independent uniformly

random elements of F2. In this section we aim to show the following:

Theorem 3.2.1 ([GT18]). Let H be a random Hankel matrix of size n × n.

Then, for every r ∈ [
√
n, n/32], with probability 1 − o(1), the matrix H has

rigidity Ω( n3

r2 logn
).

Notice that this bound improves the Ω(n
2

r
log n

r
) bound we have seen

before when

r = o(
n

log n log log n
)

To do this, we first show the rigidity of a kind of generalizd Hankel

matrices; and then we apply the averaging argument to finish up the proof.

3.2.1 Rigidity of k-Hankel Matrices

We first consider a generalization of the Hankel matrices introduced

above. Let m, k ∈ N, 16 ≤ k ≤ m. Let A ∈ Fm×m2 be the k-Hankel random

matrix, which is 
a1 a2 ... am
ak+1 ak+2 ... ak+m

...
...

. . .
...

a(m−1)k+1 a(m−1)k+2 ... a(m−1)k+m


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where a1, a2, ..., a(m−1)k+m are independent, uniformly random bits, and let

S ∈ Fm×m2 be some fixed matrix. We aim to show the following lemma

Lemma 3.2.2 ([GT18]). PA[rank(S + A) ≤ m/2] ≤ 2−km/16.

Let B = S +A and let Bi denote the i-th row of B. If rank(B) ≤ m/2,

then we can find a basis Bi1 , Bi2 , ..., Birank(B)
of the row space spanned by B in

the following constructive fashion:

1. Let i1 be the index of the first nonzero row of B.

2. For each t, let it be the index of the first row of B that cannot be spanned

by Bi1 , ..., Bit−1 .

Let an index set I = {i1, ..., ir}, r ≤ m/2 be given and set J = [m] \ I. We

have that

∀j ∈ J,Bj ∈ span{Bi : i ∈ I, i < j}

Let an arbitrary j ∈ J be given. Notice that if we fix the random bits

a1, ..., a(j−1)k, then the j-th row is completely undetermined because the first

entry of the j-th row is a(j−1)k+1.

Claim 3.2.1 ([GT18]). Let I ′ = I ∩ [j − 1] and p = |I ′| and fix a vector

c ∈ {0, 1}p. We have that

P[Bj =
∑
i∈I′

ciBi] = 2−m.

Proof. Notice that for all h ∈ [m], Bj,h = Sj,h + a(j−1)k+h where Sj,h is fixed

but a(j−1)k+h is not. Hence, since
∑

i∈I′ ciBi is fixed, and a(j−1)k+h is uniformly

chosen from {0, 1}, we have that the h-th bit of this linear combination will

be equal to the h-th bit of Bj with probability exactly 1/2. Also notice that
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each of these probabilities are independent since a(j−1)k+h are independently

chosen.

Let ∆ = dm/ke, then we can select an increasing sequence of |J |/∆

indices in J such that each two indices differ by at least ∆. Let j1, j2, ..., jt be

such a sequence of indices where t ≥ |J |/∆. For each l ∈ [t], let El be the

event that jl-th row is spanned by the rows indexed by I ∩ [jl − 1].

Claim 3.2.2 ([GT18]). For all l ∈ [t],P[El|E1, E2, ..., El−1] ≤ 2−m/2.

Proof. Notice that jl ≥ jl−1 + ∆ = jl−1 + dm/ke. That is, (jl − 1)k ≥

(jl−1 − 1)k + m. On the other hand, given fixed bits a1, ..., ajl−1, we can

determine the rows Bj1 , ..., Bjl−1
but Bjl = (a(jl−1)k+1, ..., a(jl−1)k+m). Hence,

we have

P[El|E1, E2, ..., El−1] ≤ P[El|a1, ..., ajl−1]

By claim 3.2.1, for a fixed linear combination, we have P[El|a1, ..., ajl−1, c] =

2−m. Let I ′ = I∩[j−1] and p = |I ′|. Because there are 2p different values for c,

and recall that p ≤ r ≤ rank(B) ≤ m/2, by union bound, P[El|a1, ..., ajl−1] ≤

2p2−m ≤ 2−m/2.

We are now in a good shape to prove the following lemma.

Lemma 3.2.3 ([GT18]). Let E be the event that

∀j ∈ J,Bj ∈ span{Bi : i ∈ I, i < j}

for a given index set I. Then P[E] ≤ 2−mk/8.
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Proof. Recall that (j1, j2, ..., jt) is a sequence of indices where t ≥ |J |/∆ and

each two indices are ∆ apart. For each l ∈ [t], let El be the event that jl-th

row is spanned by the rows indexed by I ∩ [jl − 1]. Hence,

P[E] ≤ P[E1, E2, ..., Et−1, Et] = P[E1]P[E2|E1]...P[Et|E1, E2, ..., Et−1] ≤
(

2−m/2
)t

Notice that

t ≥ |J |/∆ ≥ m/2

dm/ke
≥ k/4

Therefore, P[E] ≤
(

2−m/2
)t
≤ 2−mk/8.

Proof of lemma 3.2.2. We can simply apply union bound among all possible

choices of I, which is less than 2m. Hence, because we chose k ≥ 16,PA[rank(S+

A) ≤ m/2] ≤ 2mP[E] ≤ 2−km/16.

3.2.2 Rigidity of Hankel Matrices

Now we are ready show the proof Theorem 3.2.1. The main idea of this

proof is based on an averaging argument very similar to the one used to prove

Theorem 2.3.7. For simplicity, we assume m = 2r and k = n/m are integers.

Recall that we define H ∈ Fn×n2 by Hij = hi+j−1 for random h1, h2, ..., h2n−1.

Let S ∈ Fn×n2 be an s-sparse matrix with

s ≤ n3

160r2
log(

960r2

n
)

Consider the following partition of H and S into (n/m)2 submatrices:

• For each i ∈ [n/m], let the subset of row indices

Ii := {i, i+ k, ..., i+ (m− 1)k}
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• For each j ∈ [n/m], let the subset of column indices

Jj := {(j − 1)m+ 1, (j − 1)m+ 2, ..., jm}

• Let H ij be the submatrix of H indexed by Ii and Jj and Sij be the

submatrix of S indexed by Ii and Jj.

Observe that H ij is exactly a random k-Hankel matrix we analyzed in the last

section. Now, by averaging argument, there muse be some i, j such that Sij is

s′-sparse with s′ ≤ s · (m/n)2.

Let Eij denote the event that H ij = Sij + R′ for some R′ with rank(R′) ≤ r.

The next observation is that we can write H = S+R with rank(R) ≤ r only if

there is a submatrix H ij such that Eij occurs. Now we can apply union bound

with lemma 3.2.2

P[∃i, j : Eij occurs] ≤
∑
i,j

P[Eij] ≤
∑
i,j

∑
T :s′-sparse

PA[rank(T + A) ≤ m/2]

≤
( n
m

)2

·
(
m2

≤ s′

)
· 2−km/16 < n2 ·

(6m2

s′

)s′
· 2−n/16

Using the assumption that

s ≤ n3

160r2
log(

960r2

n
)

we can show that P[∃i, j : Eij occurs] = o(1), which concludes the proof.

3.3 Towards Efficient Constructions of Rigid Matrices

The complexity class FNP is the function-problem extension of the

decision-problem class NP. Formally, a relation R(x, y) is in FNP if there exists

a non-deterministic polynomial-time Turing machine M such that for any input
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x, M(x) outputs y such R(x, y) = 1 or rejects if no such y exists. Recent work

by Alman and Chen introduces a surprising application of probabilistically

checkable proofs to construct rigid matrices in FNP.

Theorem 3.3.1 ([AC19], as stated in [BHPT20]). There is a constant 0 <

δ < 1 such that for all 0 < ε < 1, there is an FNP-machine that for infinitely

many n, on input 12n outputs an 2n × 2n matrix M with

RM(2n
1/4−ε

) ≥ δ · 22n

More recently, Bhangale, Harsha, Paradise and Tal improved this result

using rectangular probabilistically checkable proofs [BHPT20].

Theorem 3.3.2 ([BHPT20]). There is a constant 0 < δ < 1 such that there

is an FNP-machine that for infinitely many n, on input 12n outputs an 2n×2n

matrix M with

RM(2n/Ω(logn)) ≥ δ · 22n

For technical details of the proofs, we refer the reader to the cited

references. We remark that these constructions still fail to give us ”Valiant”-

rigid matrices, which would require RF
A(n/ log log n) = n1+δ for some δ > 0.
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Chapter 4

Paturi-Pudlák Dimensions

In this chapter, we first trace the origin of Paturi-Pudlák Dimensions.

This was motivated by the pioneering results by Friedman [Fri93], who gave

the first nontrivial lower bound on the rigidity of a matrix over finite fields.

The matrix of interest was the generating matrix of a linear code, which can

be viewed as a linear subspace. In [PP06], Paturi and Pudlák extended the

ideas of Friedman into two notions called inner dimension and outer dimension

of linear subspaces, which were later referred to as Paturi-Pudlák Dimensions.

Lastly, we formalize the notion of row-rigidity, which will be useful in later

chapters, and discuss its relation to the original notion of rigidity we have

been familiar so far.

4.1 Friedman’s result

To appreciate the development of Paturi-Pudlák Dimensions, we first

present the original theorem and proof in Friedman’s paper [Fri93]. Many peo-

ple claim that the following theorem implies an Ω(n
2

r
logq

n
r
) lower bound of

matrix rigidity. However, it is not directly obvious from the way this theorem

was presented. After we introduce the formal definitions of Paturi-Pudlák Di-

mensions in the next section, we will show a clear argument for the Ω(n
2

r
logq

n
r
)

lower bound.
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Theorem 4.1.1 ([Fri93]). For any constant C1 > 0 there is a constant C2 > 0

such that the following holds. Let F be a finite field of q elements. Let A be

an n × n matrix such that the first n/2 rows are the basis of a linear error-

correcting code in Fn of minimum distance ≥ C1n. If B is any n × n matrix

over F with at most s non-zero entries in each row, where s ≤ n/C2, then we

have

rank(A+B) ≥ n

C2s
(logq s+ logq(q − 1))

Proof. Let An/2 denote the first n/2 rows of A and Bn/2 the first n/2 rows of

B. We set Dn/2 ∈ Fn/2×nq by Dn/2 = A + B and let r denote the rank of n/2.

Let S denote the linear space spanned by all vectors w ∈ Fn/2q such that

w ·Dn/2 = 0

We see that S is a subspace of Fn/2q with dimension n/2− r. The first part of

the proof applies a packing argument, as shown in the following claim.

Claim 4.1.1. Suppose t is an integer such that the size of a Hamming

sphere of radius t/2 in Fn/2q is at least qr. Then there is a vector w ∈ S
with weight at most t.

Proof. Suppose on the contrary that the weight of w is greater

than t for all w ∈ S. Let l denote the size of a Hamming sphere of

radius t/2 in Fn/2q . Then

|S| · l > |S| · qr = qn/2−r · qr = qn/2

However, we know that there are at most qn/2 points in Fn/2q . That

is

qn/2 ≥ |S| · l
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Hence, we complete the proof by contradiction.

Now, let w ∈ S be a vector of weight t as defined in the claim above. We then

have

0 = w ·Dn/2 = w · An/2 + w ·Bn/2

Because all the rows in An/2 are independent, we have w · An/2 6= 0 and thus

w · Bn/2 6= 0. Since each row of B has at most s non-zero entries and w has

weight t, we have that the weight of w ·Bn/2 is at most ts. On the other hand,

since the code represented by An/2 has minimum distance C1n, we have that

the weight of w · An/2 is at least C1n. Therefore, we must have

ts ≥ C1n

Take t0 = dC1n/se, we then have the size of a Hamming sphere of radius t/2

in Fn/2q is at most qt because the weight of w must be greater than t0 to achieve

0 = w ·Dn/2. Then

qr ≥
(
n/2

t0/2

)
(q − 1)t0/2

which is

r ≥ logq

[(n/2
t0/2

)
(q − 1)t0/2

]
≥ logq

(
n/2

t0/2

)
+
t0
2

logq(q − 1) ≥ t0
2

n

s
logq s

Choosing C2 ∼ 1/C1, we have

r ≥ logq

[(n/2
t0/2

)
(q − 1)t0/2

]
≥ n

C2s
(logq s+ logq(q − 1))

4.2 Strong Rigidity and Paturi-Pudlák Dimensions

Before diving into Paturi-Pudlák Dimensions, we first introduce a con-

venient notion called sparsity. It is essentially the same as the definition of
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density, which we introduced in the first chapter. However, ”sparsity” is used

in the papers we cited in the chapter.

Definition 4.2.1 (Sparsity, [PP06, DGW19]). A vector v ∈ Fn is s-sparse if

the number of non-zero coordinates in v is at most s. A matrix A ∈ Fm×n is

s-sparse if it has at most s nonzero entires. We say the matrix A is s-row

sparse if each of its row is s-sparse.

After presenting the theorem shown in the last section, Friedman in-

troduced the following notion of strong rigidity.

Definition 4.2.2 (Strong Rigidity for Subspaces, [Fri93]). Let V ⊆ Fn be a

subspace. We say that V is (s, t)-strongly rigid if for any subspace U ⊆ Fn

generated by s-sparse vectors and with dim(U) ≤ dim(V ),

dim(V ∩ U) ≤ dim(V )− t

Notice that Theorem 4.1.1 shows that the row-space of A is (k, t)-

strongly rigid with t = n logq k/(C2k). To refine this notion of strong rigidity,

Paturi and Pudlák introduced inner dimension in [PP06].

Definition 4.2.3 (Inner Dimension, [PP06]). Let V ⊆ Fn be a subspace, and

s be a positive integer less than n. We defined the inner dimension dV (s)

of V by

dV (s) := max
U
{dim(V ∩ U) :U ⊆ Fn, dim(U) ≤ dim(V ),

U is a subspace generated by s-sparse vectors}

Notice that a subspace V is (s, t)-strongly rigid if dV (s) ≤ dim(V )− t,
or equivalently, t ≤ dim(V ) − dV (s). We emphasize this because there was a

typo about this remark in the original [PP06] paper. Paturi and Pudlák also

introduced a related concept called outer dimension.
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Definition 4.2.4 (Outer Dimension, [PP06]). Let V ⊆ Fn be a subspace, and

s be a positive integer less than n. We defined the outer dimension DV (s)

of V by

DV (s) := max
U
{dim(U) :U ⊆ Fn, V ⊆ U,

U is a subspace generated by s-sparse vectors}

The following simple bound gives a first connection between the inner

and outer dimension.

Proposition 4.2.1 ([PP06]). Let V ⊆ Fn be a subspace and s be a positive

integer less than n. Then,

dV (s) +DV (s) ≥ 2 dim(V )

Proof. Let V ⊆ Fn be a subspace such that V ⊆ U,U is s-sparse and dim(U) =

DV (s). Let m = dim(V ) and W be an m-dimensional subspace of Fn such

that W ⊆ U . Hence, dim(V ∩W ) ≤ dV (s) and thus

2 dim(V ) = dim(V ) + dim(W )

= dim(V ∩W ) + dim(V ∪W )

≤ dV (s) + dim(U) = dV (s) +DV (s)

In the following theorem, we see that linear codes can be used to show

nontrivial lower bounds of DV (s) and upper bounds of dC(s), which generalizes

the proof technique invented by Friedman, as we saw in Theorem 4.1.1.

Theorem 4.2.2 ([PP06]). Let C be an [n, k, d] linear code over F2. Then for

s ≤ d/2,

DC(s) ≥ k +
d

2s
log(

2sk

d
)

dC(s) ≤ k − d

2s
log(

2sk

d
)
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Before we get into the proof, we need the following auxiliary lemma.

Lemma 4.2.3. Let C be an [n, k, d] linear code over F2. Then for s ≤ d/2,

then there exists a [DC(s), k, d/s]-code.

Proof. Consider the subspace W ⊆ Fn2 with dim(W ) = DC(s), C ⊆ W and

W is s-sparse. Let D = DC(s) and {w1, ..., wD} be a basis of W where each

wi, i ∈ [D] is s-sparse. Hence, for any x ∈ C, we have that there exists a

y ∈ FD2 such that

x =
D∑
i=1

yiwi

Let E be the set of all such y for all x. Then, we have dim(E) = dim(C) =

k. Let y′ ∈ E be a nonzero vector with minimum weight. Because x′ =∑D
i=1 y

′
iwi has weight at least d and each wi is s-sparse, we have that at least

d/s coordinates of y′ is nonzero. Hence, we obtain that E is a [DC(s), k, d/s]-

code.

Proof of Theorem 4.2.2. Using the sphere packing bound on the [D = DC(s),

k, d/s]-code E we just constructed, we have that the Hamming balls of radius

at most d/2s at each vector in B do not intersect with each other. Hence,

d/2s∑
j=1

(
D

j

)
≤ 2D−k

Notice that
d/2s∑
j=1

(
D

j

)
≥
(

D

d/2s

)
≥
(

k

d/2s

)
≥ (2sk/d)d/2s

Hence,

D − k ≥ d

2s
log(

2sk

d
) (4.2.0.1)
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Let U ⊆ Fn2 be a subspace with dim(U) = k, U is s-sparse and dim(C ∩ U) =

dC(s). Then F = C ∩ U is simply a [n, dC(s), d] code. Applying Lemma

4.2.3 again, we obtain a [DF (s), dC(s), d/s]-code. Hence, because DF (s) ≤
dim(U) = k, equation 4.2.0.1 implies

k − dC(s) ≥ DF (s)− dC(s) ≥ d

2s
log(

2sk

d
)

which means dC(s) ≤ k − (d/2s) log(2sk/d).

To see how this result relate back to Theorem 4.1.1 by Friedman, we

define ρA(s) for a matrix A ∈ Fm×n, where m,n are integers with m ≤ n:

ρA(s) := min
B
{rank(A+B) : B is s-row sparse}

Proposition 4.2.4. Let A ∈ Fm×n and 0 < s ≤ n be given. Let V be the row

space of A. Then

rank(A)− dV (s) = dim(V )− dV (s) ≤ ρA(s)

This proposition, combined with Theorem 4.2.2, connects all the dots.

If A ∈ Fm×n is the generator matrix of an [n, k, d]-code, then essentially we

have for any s-row sparse matrix B,

rank(A+B) ≥ ρA(s) ≥ rank(A)−dV (s) ≥ k−dV (s) ≥ k−k− d

2s
log(

2sk

d
) =

d

2s
log(

2sk

d
)

which is basically the result in Theorem 4.1.1.

Proof. Let B be the matrix that matches ρA(s), i.e., rank(A − B) = ρA(s).

Let U be the row space of B and let W be the row space of A− B. Then we

have dim(W ) = rank(A−B) = ρA(s) and thus

dim(V ∪ U) ≤ dim(U) + dim(W ) = dim(U) + ρA(s)
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Hence, we obtain

rank(A)− dV (s) = dim(V )− dV (s) = dim(V ∩ U) + dim(V ∪ U)− dim(U)− dV (s)

≤ dim(V ∩ U) + dim(U) + ρA(s)− dim(U)− dV (s)

= dim(V ∩ U)− dV (s) + ρA(s)

Because B is s-row sparse, we have that U is s-sparse. Thus, dV (s) ≥ dim(V ∩
U). Hence, we obtain rank(A)− dV (s) ≤ ρA(s).

4.3 Row Rigidity

Now we come back to the question raised earlier: how does Proposition

4.2.4 give us the Ω(n
2

r
log n

r
) lower bound of matrix rigidity? We are now ready

to show a clear argument.

Corollary 4.3.1 (Presented in [Lok09]). Let A ∈ Fk×nq be the generator matrix

of an asymptotically good [n, k = Ω(n), d = Ω(n)]-linear code C. Then for

0 < r < k/2,

RA(r) = Ω(
n2

r
log

n

r
)

The following proof adapts the argument given in Lokam’s survey [Lok09]

and Golovnev’s lecture notes [Gol20].

Proof. As we discussed above, by Proposition 4.2.4 and Theorem 4.2.2, for

any s-row sparse matrix B,

rank(A+B) ≥ ρA(s) ≥ d

2s
log(

2sk

d
)

This means that for any s-row sparse matrix B, to achieve rank(A + B) ≤ r,

we must have

s = Ω(
n

r
log

n

r
)
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Now, suppose we have a t-sparse matrix D ∈ Fk×nq , that is, D has at most t

non-zero entries overall. Then, by averaging argument, we have that for each

of the k/2 sparsest rows of D, each row has at most t/(k/2) entries. In other

words, if we write D′ as the submatrix of D consisting these k/2 sparsest rows,

then D′ is t/(k/2)-row sparse. In order to achieve rank(A+B) ≤ r < k/2, on

these k/2 sparsest rows of D, we must have

t/(k/2) ≥ s

which translates to

t ≥ s · k
2

= Ω(
n2

r
log

n

r
)

because k = Ω(n).

In the preceding proof, we see a linkage between ρA(s) to the original

definition of matrix rigidity. Inspired by this connection, we introduce the

definition of row rigidity, which will turn out useful in later chapters.

Definition 4.3.1 ([APY09, AC15, DGW19]). Let m,n be positive integers

and A ∈ Fm×n. We say that A is (r, s)-row rigid if for every m× n matrix R

with rank(R) ≤ r, A+R contains a row with at least s non-zero entries.

That is, A is (r, s)-row rigid if one cannot decrease the rank of A to r

by altering fewer than s entries in each row of A.

Dvir, Golovnev and Weinstein introduced the definition of strong row

rigidity for matrices, which as we will see from Lemma 6.1.3 later, is equivalent

to small inner dimensions.

Definition 4.3.2 (Strong Row Rigidity, [DGW19]). A matrix A ∈ Fm×n is

said to be (r, s)-strongly row rigid if for any invertible matrix C ∈ Fn×n,

we have A× C is (r, s)-row rigid.

41



Notice that in the few definitions above, m and n are not necessarily

equal. In fact, Alon, Panigrahy and Yekhanin extended the study of rigidity of

non-square matrices, where we allow the number of rows m to be larger than

the number of columns n [APY09]. We will explain more when we study rigid

sets in the next chapter. For now, we first show a more sophisticated way,

than the averaging argument we saw above, to construct a rigid matrix given

a row-rigid matrix. We first rewrite what it means to be rigid and strongly

rigid for matrices.

Definition 4.3.3 (Rigidity and Strong Rigidity for Matrices, [DGW19]). A

matrix A ∈ Fm×n is said to be (r, s)-rigid if for any s-sparse matrix B ∈ Fm×n,

we have A + B has rank at least r. A matrix A ∈ Fm×n is said to be (r, s)-

strongly rigid if for any invertible matrix C ∈ Fn×n, we have A× C is (r, s)

rigid.

Before we state the result, we need the definition of locally decodable

codes.

Definition 4.3.4 (Locally Decodable Codes). A linear code C : Fm → Fn is

said to be (t, δ, ε)-locally decodable if there exists a randomised decoding

algorithm A such that for allm ∈ Fm and all w ∈ Fn such that dist(C(m), w) ≤

δ :

1. For every index i ∈ [m]

P[A(w, i) = mi] ≥ 1− ε,

where the probability is taken over the random coin tosses of the algo-

rithm A.
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2. A makes at most t queries to w.

We abuse the notation and write C ∈ Fm×n as its generating matrix.

Theorem 4.3.2 (From Row Rigidity to General Rigidity, [DGW19]). Let A ∈
Fm×n be a rectangular matrix, E ∈ Fl×m a (t, δ, 3/4)-linear locally decodable

code and matrix B := E · A. Then,

1. If A ∈ Fm×n is (r, s+ 1)-row rigid, then B ∈ Fl×n is (r, (δsl)/t)-rigid.

2. If A ∈ Fm×n is (r, s+ 1)-strongly row rigid, then B ∈ Fl×n is (r, (δsl)/t)-

strongly rigid.

Let dist(u, v) to denote the Hamming distance between two vectors u, v.

We need a lemma from locally decodable code to prove this theorem, which

we state without a proof.

Lemma 4.3.3 ([GKST02, DS07]). Let C ∈ Fm×n be a (t, δ, 3/4)-linear locally

decodable code and let R be a set of rows of C with |R| ≥ (1 − δ)m. For any

i ∈ [n], there exists a set of t rows in R which spans the ith standard basis

vector ei.

Proof of Theorem 4.3.2. Let A ∈ Fm×n be (r, s+1)-row rigid and suppose that

B is not (r, (δsl)/t)-rigid. Then we have B = D+S where D ∈ Fl×n has rank

at most r and S ∈ Fl×n has density dens(S) ≤ (δsl)/t. Let S ′ be the set of row

of S that are s/t-sparse. By averaging argument, we have that |S ′| ≥ (1− δ)l.
Let D′ be the corresponding rows in D. Because A is (r, s+1)-row rigid, some

rows Ai has Hamming distance at least (s + 1) from the space generated by

D.

On the other hand, by Lemma 4.3.3, there exist t rows in D′ and S ′ which
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spans Ai. This means that Ai has a Hamming distance at most t · (s/t) = s

from the row space of l′. Therefore, by contradiction, we must have B is

(r, (δsl)/t)-rigid.

Let A ∈ Fm×n be (r, s + 1)-strongly row rigid, then for all invertible matrix

T ∈ Fn×n such that A× T is (r, s+ 1)-row rigid. Notice that

E × (A× T ) = (E × A)× T = B × T

where B ∈ (r, (δsl)/t). As we have just shown, B × T is (r, (δsl)/t)-rigid.

Since T is arbitrary, we have that B is (r, (δsl)/t)-strongly rigid.

The following corollary shows that we can obtain rigid square matrices

from rigid non-square matrices.

Corollary 4.3.4 (Non-square Matrices to Square Matrices, [DGW19]). For

every constant α > 0, and an (r, s + 1)-row rigid matrix A ∈ Fm×n, we can

construct a square matrix B ∈ Fl×l, l = mO(1/α), which is

(r,
l

n
· s

(logm)1+α
)-row rigid and (r,

l2

n
· s

(logm)1+α
)-rigid.

To prove this corollary we use the following result from locally decod-

able code without proof. This lemma allows us to construct linear locally

decodable codes.

Lemma 4.3.5 ([Dvi11]). For every α, ε > 0, there exists δ = δ(ε) > 0 and an

explicit family of ((log n)1+α, δ, ε)-linear locally decodable codes C ∈ Fm×n for

m = nO(1/α).

Proof of Corollary 4.3.4. Let l = mO(1/α) be a multiple of n and δ some con-

stant. We also let C ∈ Fl×m be a ((logm)1+α, δ, 3/4)-linear locally decodable
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code. Hence, we can construct a square matrix B ∈ Fl×l by putting side by

side (l/n) copies of C × A.

It remains to show that B is rigid. By Theorem 4.3.2, we have C × A is

(r, (δsl)/(logm)1+α)-rigid. Hence,

RB(r) ≥ l

n
· δsl

(logm)1+α

and by averaging over l rows, B must be (r, (δsl)/[n · (logm)1+α])-row rigid.

Setting δ = 1 or some suitable constant, we get the desired result.
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Chapter 5

Rigid Sets

Recall from the definition of row-rigidity from last chapter:

Definition 5.0.1. Let m,n be positive integers and A ∈ Fm×n. We say that

A is (r, s)-row rigid if for every m × n matrix R with rank(R) ≤ r, A + R

contains a row with at least s non-zero entries.

That is, A is (r, s)-row rigid if one cannot decrease the rank of A to

r by altering fewer than s entries in each row of A. In this chapter we view

rigidity from a different perspective. Let’s think of the matrix A ∈ Fm×n as

a subset S of Fn, where each row of A is an element of this set S. So far we

have seen the trade-off between the values of dimensions (rank) and distance

(rigidity) that can be obtained by explicit sets of size n (i.e. m = n for the

size of the matrix). Alon, Panigrahy and Yekhanin initiated the study of rigid

sets to investigate the trade-off between the values of size and distance, when

the value of dimension is fixed [APY09]. Let’s introduce the definition of rigid

sets.

Definition 5.0.2. For x ∈ Fn2 , and a linear subspace U ⊆ Fn2 , we define the

Hamming distance from x to U by

dist(x, U) = min
u∈U
|x+ u|

where |v| denotes the Hamming weight of v.
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Definition 5.0.3 (Rigid Sets, [APY09]). A set S ⊆ Fn2 is called (n, k, d)-rigid

if for every linear subspace U ⊆ Fn2 , dim(U) = k, we have

max
s∈S

dist(s, U) ≥ d

Let A ∈ Fm×n2 ,m = |S| be the matrix whose rows are the elements of

S. Notice that A is (k, d)-row rigid if and only if S is (n, k, d)-rigid. In this

setting, we no longer insist on m = n or m = O(n), but aims to get m as small

as possible as a function of d, with the goal of achieving m = O(n) + dc for

any constant c. However, we are quite far from this goal:

Theorem 5.0.1 ([APY09], [SY11]). For every 0 ≤ d ≤ O(n), there exists an

explicit set (n, n/2, d)-rigid set S ⊆ Fn2 of size 2O(d)n/d.

Before diving into the proof, we need some notation and auxilliery

lemmas.

Notation 5.0.4. Let I ⊆ [n] be a set of coordinates. For a vector x ∈ Fn, we

write x|I to denote the vector x restricted to the coordinates in I. Similarly,

for a linear subspace U ⊆ Fn, we write U |I to denote the linear subspace U

restricted to the coordinates in I.

Lemma 5.0.2. Let U ⊆ Fn2 be a linear subspace with dim(U) = k, then

Px∈{0,1}n [x ∈ U ] ≤ 1

2n−k

Proof. Let I ⊆ [n] be the set of coordinates such that U |I = Fn2 and J = [n]\I.

Hence, we note that a vector x = x|I + x|J ∈ U is uniquely determined by x|I
because x|J is the zero vector. Hence, for a random vector x ∈ {0, 1}n, there

is at most 2k−n chance that x is in U .
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Lemma 5.0.3. For every ε > 0, there exists a δ > 0 such that for all linear

subspaces U ⊆ Fn2 , dim(U) ≤ (1 − ε)n, there exists a point x ∈ {0, 1}n such

that

dist(x, U) ≥ δn

Proof. Let U be given. We note that for a random vector x ∈ {0, 1}n,

P[dist(x, U) ≤ δn] = P[∃I ⊆ [n], |I| = (1− δ)n such that x|I ∈ L|I ]

For a fixed set I with |I| = (1− δ)n, we have by Lemma 5.0.2, we have

P[x|I ∈ U |I ] =
1

2(1−δ)n−(1−ε)n =
1

2(ε−δ)n

Hence, by union bound on all possible set I of size (1− δ)n, the probability

P[dist(x, U) ≤ δn] ≤
(
n

δn

)
1

2(ε−δ)n

is negligible when δ is sufficiently smaller than ε.

Proof of Theorem 5.0.1. As a consequence of Lemma 5.0.3, let δ be the con-

stant that for all linear subspace U ⊆ Fn2 , dim(U) = n/2, there exists a point

p in Fn2 that is more than δn-far from U .

To obtain S, we first split the coordinates into cn/d disjoint sets Z1, Z2, ..., Zδn/d,

each of size d/δ. For each set Zi, we let Wi be the set of all binary vectors

xi ∈ Fn2 with support on this set Zi. That is, each xi has some value 1 on some

coordinates in set Zi and has 0 on every other coordinates. Let S =
⋃
iWi

consist of all these vectors. Hence,

|S| = 2O(d)n/d

and every vector in Fn2 is the sum of at most δn/d vectors in S.

Let a linear subspace U ⊆ Fn2 , dim(U) = n/2 be given. Suppose every vector
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in S is at most d-far from U . That is, any vector in S is the sum of one vector

in U and at most d unit vectors. Because every vector v in Fn2 is the sum of at

most δn/d vectors in S, v must also be the sum of a vector in U and at most

d× (δn/d) = δn unit vectors. Hence, no point p will be more than δn-far from

U , which gives us a contradiction.

5.1 Strong Rigid Sets

As an attempt to break the 2O(d)n/d-barrier, Alon and Cohen intro-

duced U-polynomials and show that explicitly constructing rigid sets can be

reduced to explicitly constructing a small hitting set [AC15]. In fact, Alon

and Cohen used a stronger notion than rigid sets, called strong rigid set, and

show that small-biased sets are strong rigid sets:

Definition 5.1.1 (Strong Rigid Sets, [AC15]). A set S ⊆ Fn2 is called strong

(n, k, d)-rigid if for every linear subspace U ⊆ Fn2 , dim(U) = k, we have

Es∼S[dist(s, U)] ≥ d

where ∼ denotes a uniformly random sample.

Definition 5.1.2 (Small Biased Sets, [NN93]). We say that a set S ⊆ Fn2 is

ε-biased if for every nonzero α ∈ Fn2 ,∣∣∣Es∼S[(−1)〈α,s〉]
∣∣∣ ≤ ε

Theorem 5.1.1 ([AC15]). For every 0 ≤ d ≤ cn for some suitable constant

0 < c < 1. If S ⊆ Fn2 is an exp(−d)-biased set, then S is (n, n/2, d)-strong

rigid.
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Via probabilistic methods, there exists ε-biased sets in Fn2 with size

O(n/ε2). Unfortunately, we do not know an explicit construction of small

biased sets that would have the desired size, i.e. m = O(n) + dc. Nonetheless,

the construction by Alon et al [ABN+92] yields a small biased set of size

n · exp(d), which matches that in Theorem 5.0.1.

5.1.1 U polynomials

Let’s first introduce U-polynomials.

Definition 5.1.3 ([AC15]). For a subspace U ⊆ Fn2 , the U-polynomial

pU,ρ :⊆ Fn2 → R is defined as

pU,ρ(x) =
1

Wρ(U)
·
∑
u∈U

ρ|u| · (−1)〈u,x〉

where Wρ(U) =
∑

u∈U ρ
|u| is the weight enumerator of U with parameter

ρ ∈ (0, 1).

The following theorem implies that to explicitly construct an (n, k, d)-

rigid set, it suffices to explicitly construct a set S such that for every U ⊂ Fn2
with dimension n− k, there exists s ∈ S such that pU(s) ≤ 2−Ω(d).

Theorem 5.1.2 ([AC15]). Let U ⊆ Fn2 be a linear subspace. Then, for any

parameter ρ ∈ (0, 1) and any point x ∈ Fn2 ,

dist(x, U) ≥
(

log
1 + ρ

1− ρ

)−1

· log
1

pU⊥,ρ(x)

In particular, we have

dist(x, U) = Ω(log
1

pU⊥,ρ(x)
)
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5.1.2 Fourier analysis

We will need a few definitions and tools from Fourier analysis (without

proof) first.

Definition 5.1.4. We define the inner product 〈·, ·〉 on pairs of function

f, g : Fn2 → R by

〈f, g〉 = 2−n
∑
x∈Fn2

f(x)g(x)

Definition 5.1.5 (Fourier Expansion). Every function f : Fn2 → R can be

uniquely expressed as a multilinear polynomial,

f(x) =
∑
α∈Fn2

f̂(α)χα(x)

where χα(x) = (−1)〈α,x〉. This expression is called the Fourier expansion of

f , and the real number f̂(α) = 〈f, χα〉 is called the Fourier coefficient of f

on S. Collectively, the coefficients are called the Fourier spectrum of f .

Definition 5.1.6 (Noise Operator). For 0 ≥ ρ ≥ 1 and f : Fn2 → R, we define

the noise operator with parameter ρ, Tρ(f) : Fn2 → R on the function f by

Tρ(f)(x) =
∑
y∈Fn2

(1− ρ
2

)|y|
·
(1 + ρ

2

)n−|y|
· f(x+ y)

Proposition 5.1.3. T̂ρ(f)(α) = ρ|α|f̂(α).

Definition 5.1.7. Let the parameter ρ ∈ (0, 1) and the linear subspace U ⊆
Fn2 be given. The function energyU,ρ : Fn2 → R is defined as

energyU,ρ(x) =
1

Wρ(U)
·
∑
u∈U

ρ|u+x|

Notice that energyU,ρ(x) ∈ (0, 1] and energyU,ρ(x) = 1 if and only if x ∈ U .
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Theorem 5.1.4 (MacWilliam’s Theorem [MS77]). Let U ⊆ Fn2 be a linear

subspace with dimU = k. Then, for any parameter ρ ∈ (0, 1),

Wρ(U
⊥) =

(1 + ρ)n

2k
·W 1−ρ

1+ρ
(U)

Now we are ready to prove Theorem 5.1.2.

Proof of Theorem 5.1.2. We use 1U : Fn2 → {0, 1} to denote the indicator

function for U , i.e., 1U = 1 if and only if x ∈ U . Then,

Tρ(1U)(x) =
∑
y∈Fn2

(1− ρ
2

)|y|
·
(1 + ρ

2

)n−|y|
· 1U(x+ y)

=
(1 + ρ

2

)n
·
∑
y∈Fn2

(1− ρ
1 + ρ

)|y|
· 1U(x+ y)

=
(1 + ρ

2

)n
·
∑
u∈U

(1− ρ
1 + ρ

)|x+u|

=
(1 + ρ

2

)n
·W 1−ρ

1+ρ
(U) · energyU, 1−ρ

1+ρ
(x)

(5.1.2.1)

Note that because U is a subspace, we have for α 6∈ U⊥, χα(x) = 1 for exactly

half of the time and χα(x) = −1 for exactly the other half,

〈1U , χα〉 =
1

2n

(∑
x∈U

f(x)χα(x) +
∑
x 6∈U

f(x)χα(x)
)

=
1

2n

∑
x∈U

f(x)χα(x) = 0

As for α ∈ U⊥,

〈1U , χα〉 =
1

2n

(∑
x∈U

f(x)χα(x)+
∑
x6∈U

f(x)χα(x)
)

=
1

2n

∑
x∈U

χα(x) =
1

2n
·2k = 2k−n

Therefore,

1̂U(α) =

{
2k−n, α ∈ U⊥

0, otherwise
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By Proposition 5.1.3,

Tρ(1U)(x) =
∑
α∈Fn2

T̂ρ(1U)(α) · χα

=
∑
α∈Fn2

ρ|α|1̂U(α) · χα

=
∑
α∈U⊥

ρ|α|1̂U(α) · χα

= 2k−n
∑
α∈U⊥

ρ|α| · χα

By Definition 5.1.3, we have

Tρ(1U)(x) = 2k−n
∑
α∈U⊥

ρ|α| · χα

= 2k−n ·Wρ(U
⊥) · pU⊥,ρ(x)

By MacWilliam’s Theorem, 5.1.4, we have

Tρ(1U)(x) = 2k−n ·Wρ(U
⊥) · pU⊥,ρ(x)

= 2k−n · (1 + ρ)n

2k
·W 1−ρ

1+ρ
(U) · pU⊥,ρ(x)

=
(1 + ρ

2

)n
·W 1−ρ

1+ρ
(U) · pU⊥,ρ(x)

(5.1.2.2)

Combining Equation 5.1.2.1 and 5.1.2.2, we have

energyU, 1−ρ
1+ρ

(x) = pU⊥,ρ(x)

Let d = dist(x, U). Then there exists w ∈ U such that |x+w| = d. By

Definition 5.1.7, we have

W 1−ρ
1+ρ

(U) · energyU, 1−ρ
1+ρ

(x) =
∑
u∈U

(1− ρ
1 + ρ

)|u+x|

Because U is a subspace,∑
u∈U

(1− ρ
1 + ρ

)|u+x|
=
∑
u∈U

(1− ρ
1 + ρ

)|u+x+w|
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Using triangle inequality, we have |u+ x+ w| ≤ |u|+ |x+ w|. Thus,∑
u∈U

(1− ρ
1 + ρ

)|u+x+w|
≥
∑
u∈U

(1− ρ
1 + ρ

)|u|+|x+w|

=
(1− ρ

1 + ρ

)d∑
u∈U

(1− ρ
1 + ρ

)|u|
=
(1− ρ

1 + ρ

)d
·W 1−ρ

1+ρ
(U)

In summary, we obtain

pU⊥,ρ(x) = energyU, 1−ρ
1+ρ

(x) =
1

W 1−ρ
1+ρ

(U)
·
∑
u∈U

(1− ρ
1 + ρ

)|u+x+w|
≥
(1− ρ

1 + ρ

)d
which concludes the proof.

5.1.3 Random Sets

As we discussed before, to explicitly construct an (n, k, d)-rigid set, it

suffices to explicitly construct a set S such that for every U ⊂ Fn2 with di-

mension n − k, there exists s ∈ S such that pU(s) ≤ 2−Ω(d). The following

proposition suggests that a random set S has such property with high proba-

bility.

Notation 5.1.8. Let Pk denote the class of all U -polynomials pU,ρ with dimU =

k.

Proposition 5.1.5. Let the parameter ρ ∈ (
√

2−1, 1) and the linear subspace

U ⊆ Fn2 , dimU = n/2 be given. Then, with high probability, for a random set

S ⊂ Fn2 of size O(n), the following holds: for every pU,ρ ∈ Pn/2,

pU,ρ(s) ≤ 2Ω(n)

for at least half of the elements s ∈ S.
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Before diving the proof, we need an auxiliary lemma.

Lemma 5.1.6. Let the parameter ρ ∈ (0, 1) and the linear subspace U ⊆
Fn2 , dimU = n/2 be given. Then

Wρ(U) ≥
(1 + ρ√

2

)n
Proof. Because U is a linear subspace with dimU = n/2, there are exactly

2n/2 cosets x+ U of subspace U . For each coset, as ρ < 1,∑
w∈x+U

ρ|w| ≤
∑
u∈U

ρ|u| = Wρ(U)

On the other hand, using binomial expansion, we have

(1 + ρ)n =
∑
w∈Fn2

ρ|w| =
∑
x

∑
w∈x+U

ρ|w| ≤
∑
x

Wρ(U) = 2n/2Wρ(U)

which concludes the proof.

Proof of Proposition 5.1.5. Let pU,ρ ∈ Pn/2 be given. Then,

Ex∼Fn2 [pU,ρ(x)] = Ex∼Fn2

[
1

Wρ(U)
·
∑
u∈U

ρ|u|(−1)〈u,x〉

]

=
1

Wρ(U)
·
∑
u∈U

(
ρ|u| · Ex∼Fn2 [(−1)〈u,x〉]

)
Notice that Ex∼Fn2 [(−1)〈u,x〉] = 1 if u = 0 and Ex∼Fn2 [(−1)〈u,x〉] = 0 otherwise.

By Lemma 5.1.6,

Ex∼Fn2 [pU,ρ(x)] =
1

Wρ(U)
·
∑
u∈U

(
ρ|u| · Ex∼Fn2 [(−1)〈u,x〉]

)
=

1

Wρ(U)
≤
( √2

1 + ρ

)n
Because ρ >

√
2 − 1,

√
2/(1 + ρ) < 1. Hence, there exists a constant α such

that

Ex∼Fn2 [pU,ρ(x)] ≤
( √2

1 + ρ

)n
< 2αn
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By Markov’s inequality, we have

Px∼Fn2 [pU,ρ(x) > 2αn/2] ≤ 2−αn/2

For some m ≤ n, let x1, ..., xm be independent and uniformly random vectors

in Fn2 . Let E be the event that there exists some subset S ⊆ [n], |S| = m/2

such that for all i ∈ S, pU,ρ(xi) > 2αn/2. We have

Px1,...,xm∼Fn2 [E] ≤
(
m

m/2

)
· (Px∼Fn2 [pU,ρ(x) > 2−αn/2])m/2

≤
(
m

m/2

)
· 2−αnm/4 ≤ 2m · 2−αnm/4

Set m = O(n), we have that Px1,...,xm∼Fn2 [E] = 2−Ω(n2).

5.2 Small Biased Sets Are Rigid

We are now ready to prove Theorem 5.1.1 using U-polynomials.

1st proof of Theorem 5.1.1. Let d be given. Let S ⊆ Fn2 be an ε-biased set

with ε = exp(−d) and |S| = O(n/ε3). Let U ⊆ Fn2 be a linear subspace with

dimU = n/2. By Lemma 5.1.6, for ρ ∈ (
√

2 − 1, 1) and suitable constant d,

we have

Wρ(U) ≥
(1 + ρ√

2

)n
≥ exp(d) =

1

ε
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Now,

Ex∼S[pU,ρ(x)] = Ex∼S

[
1

Wρ(U)
·
∑
u∈U

ρ|u|(−1)〈u,x〉

]

=
1

Wρ(U)
·
∑
u∈U

(
ρ|u| · Ex∼S[(−1)〈u,x〉]

)
=

1

Wρ(U)
·
(

1 + ε
∑

u∈U,u 6=0

ρ|u|
)

<
1

Wρ(U)
·
(

1 + ε
1

Wρ(U)

)
=

1

Wρ(U)
+ ε

≤ 2ε

Because log(1/x) is a convex function, by Jensen’s Inequality,

Ex∼S[log
1

pU,ρ(x)
] ≥ log

1

Ex∼S[pU,ρ(x)]
> log

1

2ε

Because U is a linear subspace with dimU = n/2, its dual U⊥ is also a linear

subspace with dimU = n/2. Hence, by Theorem 5.1.2,

Ex∼S[dist(x, U)] = Ex∼S[Ω
(

log
1

pU⊥,ρ(x)

)
] = Ω

(
log

1

ε

)
In summary, S is a (n, n/2, d)-strong rigid set with |S| = O(n/ε3) = n ·
2Θ(d).

Alon and Cohen also gave two alternative proofs for Theorem 5.1.1, one

using bias reduction and the other using expander graphs, which we discuss

below.

5.2.1 Bias Reduction

The second proof relies on the Parity Lemma [NN93].
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Definition 5.2.1 (Statistical Distance). Let x ∼ X, y ∼ Y be two random

variables from two distributions X, Y on the same support S. We define the

statistical distance between X and Y by

SD(X, Y ) := max
A⊆S

∣∣∣P[x ∈ A]− P[y ∈ A]
∣∣∣

This following lemma says that the projection of a small biased set onto

a small set of coordinates is close to the uniform distribution, which we state

without proof.

Lemma 5.2.1 (The Parity Lemma [NN93]). Let S ⊆ Fn2 is an ε-biased set.

Let T ⊆ [n] be an nonempty set of size k. Denote ST the projection of S on

the index set T . Then,

SD(ST ,Uk) ≤ ε · 2k/2

The name ”bias-reduction” is exemplified by the following lemma.

Lemma 5.2.2 ([AC15]). Let S ⊆ Fn2 is an ε-biased set. For every integer

c ≥ 1, let c · S denote the set S + ... + S for c times. We have c · S is an

εc-biased set.

Proof. For every nonzero α ∈ Fn2 ,∣∣∣Es∼c·S[(−1)〈α,s〉]
∣∣∣ =

∣∣∣Es1,...,sc∼S[(−1)〈α,s1+...+sc〉]
∣∣∣

=
∣∣∣Es1,...,sc∼S[

c∏
i=1

(−1)〈α,si〉]
∣∣∣

=
c∏
i=1

∣∣∣Esi∼S[(−1)〈α,si〉]
∣∣∣ ≤ εc
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Here we present the second proof, the main idea is to ”reduce the bias

enough so as to cancel the exponential loss incurred by the Parity Lemma”

[AC15].

2nd proof of Theorem 5.1.1. Let U ⊆ Fn2 be a subspace with dimU = n/2.

Then,

Px∈Fn2 [dist(x, U) > n/10] > 0.6

Let S be an 2−cd-biased set where we choose constant c that satisfies

2−cn/20+n/2 < 0.1

Let S ′ = (n/20d) · S. Then, Lemma 5.2.2, we have that S ′ is 2−cn/20-biased.

By the Parity Lemma 5.2.1, we have

SD(S ′,Un) ≤ 2−cn/202n/2 < 0.1

where Un is the uniform distribution on Fn2 . This gives us

Px∼S′ [dist(x, U) > n/10] > 0.6− 0.1 = 0.5

By Markov’s inequality, this implies

Ex∼S′ [dist(x, U)] > n/20

Equivalently, let k = (n/20d) because S ′ = k · S,

n/20 < Ex∼S′ [dist(x, U)] = Ex1,...,xk∼S[dist(
k∑
i=1

xi, U)]

Notice

dist(
k∑
i=1

xi, U) = |
k∑
i=1

xi + u|
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for some u. For all i ∈ [k], let ui be such that |si + ui| = dist(si, U), then

dist(
k∑
i=1

xi, U) = |
k∑
i=1

xi+u| ≤ |
k∑
i=1

xi+
k∑
i=1

ui| ≤
k∑
i=1

|xi+ui| =
k∑
i=1

dist(si, U)

Then because each xi are independent

Ex∼S[dist(x, U)] =

∑k
i=1 Ex∼S[dist(x, U)]

k

=
Ex1,...,xk∼S[

∑k
i=1 dist(xi, U)]

k

≥ Ex1,...,xk∼S[dist(
∑k

i=1 xi, U)]

k

≥ Ex∼S′ [dist(x, U)]

k

>
n/20

k
=

n/20

n/20d
= d

Hence, S is a (n, n/2, d)-strong rigid set.

5.2.2 Expander Graphs

Again, we introduce some backgrounds for expander graphs before

proving Theorem 5.1.1.

Definition 5.2.2. If every vertex of a graph G has degree k, then G is said

to be k-regular.

Let G = (V.E) be an undirected D-regular on n vertices. Let AG be

the normalised adjacency matrix of G. That is, for any u, v ∈ V ,

(AG)u,v =
number of edges between u and v

D

Definition 5.2.3. A D-regular graph G on n vertices is called a (n,D, λ)-

expander if the absolute value of the second largest eigenvalue is λ.
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Lemma 5.2.3 ([AC88]). Let G = (V,E) be an (n,D, λ)-expander. Then for

any set S ⊆ V with size S = αn,∣∣∣e(S)− 1

2
Dα2n

∣∣∣ ≤ 1

2
λDα(1− α)n

Theorem 5.2.4 ([AR94]). Let S ⊆ Fn2 be an ε-biased set. Let GS = (V,E) be

a subgraph of the Boolean cube on Fn2 such that V = Fn2 and an edge connects

a pair u, v ∈ V if u+ v ∈ S. Then GS is a (2n, |S|, ε)-expander.

Lemma 5.2.5 ([AC15]). Let S ⊆ Fn2 be an ε-biased set. Then for any subspace

U ⊆ Fn2 with dimU = k, ∣∣∣S ∩ U
S

∣∣∣ ≤ 1

2n−k
+ ε

Proof. Let GS = (V,E) be constructed as in Theorem 5.2.4. Then GS is a

(2n, |S|, ε)-expander. Let U ⊂ V = Fn2 be a subspace with with dimU = k.

Then, for any vertex u ∈ U , we have the degree of u in the induced subgraph

of GS on U is ∣∣∣{s ∈ S|u+ s ∈ U}
∣∣∣ =

∣∣∣{s ∈ S|s ∈ U}∣∣∣ = |U ∩ S|

Hence,

e(U) =
1

2

∑
u∈u

deg(u) =
1

2

∑
u∈u

|U ∩ S| = 1

2
|U | · |U ∩ S|

By Lemma 5.2.3, we have

|U | · |U ∩ S| = 2e(U) ≤ |S|
( |U |

2n
)2

2n + ε · |S| · |U |

Hence,
|U ∩ S|
|S|

≤ |U |
2n

+ ε
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3rd proof of Theorem 5.1.1. Let U ⊂ Fn2 be a subspace with with dimU =

n/2. We partition the n unit vectors of Fn2 into 8d disjoint sets

B1, ..., B8d

each of size n/8d. For each subset I ⊂ [8d] with |I| = 2d, we define

UI = span(U ∪
⋃
i∈I

Bi)

Hence, we have that for each I, dimUI ≤ 3n/4 and for every vector x, dist(x, UI) ≤

2d for some I. Let S ⊆ Fn2 be an ε-biased set. By Lemma 5.2.5, for every I,

we have

|S ∩ UI | ≤ |S| · (
1

2n−3n/4
+ ε) = |S| · ( 1

2n/4
+ ε)

Because there are at most (
8d

2d

)
< 120d

such sets I, which covers all x such that dist(x, U) ≤ 2d. Thus there are at

most

120d|S| · ( 1

2n/4
+ ε)

vectors x in S such that dist(x, U) ≤ 2d. Set ε = 1/(120d · 4), then

120d|S| · ( 1

2n/4
+ ε) ≤ 120d|S| · ( 1

2n/4
+

1

120d · 4
) ≤ |S| · ( 27d

2n/4
+ 1/4) ≤ |S|

2

for c ≤ 1/28 and d ≤ cn. Hence, we have that at most half of the vectors in S

are at most 2d-far from U , which gives us

Ex∼S[dist(x, U)] ≥ d

and S is a (n, n/2, d)-strong rigid set.
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Chapter 6

Linear Data Structures and Rigidity

In the last chapter, we saw the 2O(d)n-barrier for constructing explicit

rigid sets. Meanwhile, we are also stuck at proving strong lower bounds for

linear data structures. A recent line of work found that such difficulty is not

an accident [DGW19, RR20]. They show that sufficiently strong lower bounds

for linear data structures would imply new bounds for rigid matrices and rigid

matrices directly correspond to hard query sets for the linear data structures.

In this chapter, we present the main idea on how such a link is established.

For simplicity, we omit the discussion of explicitness in the chapter, we refer

the readers to the referenced papers for further details.

6.1 Linear Data Structures and Row Rigidity

We first present the idea by Dvir, Golovnev and Weinstein [DGW19],

who found a connection between linear data structures lower bounds and row

rigidity via establishing a new result on the Paturi-Pudlák dimensions. Before

we dive in, we first re-introduce the definition of sparsity.

Definition 6.1.1 (Sparsity, [DGW19]). A vector v ∈ Fn is s-sparse if the

number of non-zero coordinates in v is at most s. A matrix A ∈ Fm×n is

s-sparse if it has s nonzero entires. A is s-row sparse if each of its row is

s-sparse. A subspace V ∈ Fm is s-sparse if it is the column space of a s-row
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sparse matrix B.

Notice that the sparsity defined for subspaces are a bit unconventional.

This leads to the inner dimensions and out dimensions defined with respect to

column spaces, while in Definition 6.1.2 and 6.1.2, the inner dimensions and out

dimensions defined with respect to row spaces. Dvir, Golovnev and Weinstein

[DGW19] suggested this new definition and noted such a difference is essential

in the context of this work: because the strong row rigidity (Definition 6.1.3)

and linear data structures (Definition 6.1.4) are defined in a particular way, we

need to work with the column space later for Lemma 6.1.3 and 6.1.4 in order

to establish the link between linear data structure lower bounds and matrix

rigidity (Theorem 6.1.5).

Definition 6.1.2 (Inner Dimension and Outer Dimension, [DGW19]). Let

V ⊆ Fn be a subspace, and s be a positive integer less than n. We define

dV (s) := max
U
{dim(V ∩ U) : U ⊆ Fn, dim(U) ≤ dim(V ), U is s-sparse}

DV (s) := max
U
{dim(U)|U ⊆ Fn, V ⊆ U,U is s-sparse}

The main building block to connect data structure lower bounds and

row rigidity is the following theorem, which says that every matrix either has

small outer dimension or contains a matrix of small inner dimension.

Theorem 6.1.1 ([DGW19]). Let m,n, t, k be positive integers and let 0 <

ε < 1. If M ∈ Fm×n is a matrix whose column space V ⊆ Fm has an outer

dimension

DV (tk + nεk) ≥ n

1− ε
then for some n′ ≥ nεk, A contains a submatrix M ′ ∈ Fm×n′ whose column

space U ⊆ Fm has an inner dimension

dU ≤ rank(B)− εn′

64



To prove this result, we first need an auxiliary lemma:

Lemma 6.1.2 ([DGW19]). Let m,n, k be positive integers. A matrix M ∈
Fm×n, whose column space V ⊆ Fm has an inner dimension dV ≥ rank(M)−r,
can be decomposed as

M = A ·B +M ′ · C

where M ′ ∈ Fm×r is a submatrix of M , A ∈ Fm×n is t-row sparse, B ∈
Fn×n, C ∈ Fr×n.

Proof. By the definition of inner dimension (Definition 6.1.2), we have that

there exists an s-sparse subspace U ⊂ Fn with dim(U) ≤ dim(V ) and

dim(V ∩ U) ≥ rank(M)− r

Let A ∈ Fm×n be a t-row sparse matrix generating U . In order to generate

the row space V , it suffices to extend A with at most k column vectors from

M ; we let M ′ be the matrix stacked with these column vectors. We then

have that there exists some matrices B ∈ Fn×n, C ∈ Fr×n satisfying M =

A ·B + C ·M ′.

We are now ready to use this expansion to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Let 0 < ε < 1. Suppose such an M ′ does not exist.

Consider the following expansion of M ∈ Fm×n: starting with i = 0,M0 = M ,

for Mi ∈ Fm×ni , as long as Vi, the column space of Mi, satisfies

dVi ≥ rank(Mi)− nεi+1

we use the previous lemma to get

Mi = Ai ·Bi +Mi+1 · Ci
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where Mi+1 ∈ Fm×nεi+1
is a submatrix of Mi, Ai ∈ Fm×nεi is t-row sparse,

Bi ∈ Fnεi×nεi , Ci ∈ Fnεi+1×nεi . Then for a given positive integer k, we then

obtain an expansion of M as the following

M = M0 = A0 ·B0 +M1 · C0

= A0 ·B0 + (A1 ·B1 +M2 · C1) · C0

= A0 ·B0 + A1 ·B1 · C0 +M2 · C1 · C0

= A0 ·B0 + A1 ·B1 · C0 + A2 ·B2 · C1 · C0 +M3 · ·C2 · C1 · C0

= A0 ·B0 +
k−1∑
i=1

Ai ·Bi

( 0∏
j=i−1

Cj

)
+Mk

( =∏
j=k−1

Cj

)

=
[
A0 A1 . . . Ak−1 Mk

]
·


D0

D1
...

Dk−1

Dk


where

Di =


B0 for i = 0

Bi

(∏0
j=i−1Cj

)
for 1 ≤ i < k∏0

j=k−1Ci for i = k

Let

A :=
[
A0 A1 . . . Ak−1 Mk

]
, D =


D0

D1
...

Dk−1

Dk


Then M = A×D. Recall that for all i, Ai is t-sparse and Mk ∈ Fnεk×n.

This means that A has at most kt + nεk non-zero entries on each row. The

number of rows of D is
k∑
i=0

nεi <
n

1− ε
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This implies that M can be generated by a kt+ nεk-row sparse matrix whose

column subspace has dimension less than n/(1− ε). This contradicts the fact

that

DV (tk + nεk) ≥ n

1− ε
and concludes the proof.

6.1.1 Rigidity and Inner Dimension

Let’s recall the definition of strong row rigidity, which as we saw earlier,

implies the general notion of rigidity (see Theorem 4.3.2.)

Definition 6.1.3 (Strong Row Rigidity, [DGW19]). A matrix A ∈ Fm×n is

said to be (r, s)-strongly row rigid if for any invertible matrix C ∈ Fn×n,

we have A× C is (r, s)-row rigid.

The following lemma shows that the definition of strong row rigidity of

rectangular matrices is equivalent to small inner dimensions. In particular, we

limit our attention to matrices with more rows than columns, i.e. m > n.

Lemma 6.1.3 ([DGW19]). Let matrix A ∈ Fm×n have rank n and let V ⊆ Fm

be its columns space. Then the following are equivalent:

1. A is (r, s)-strongly row rigid.

2. dV (s) ≤ rank(A)− r.

3. V is not contained in a subspace of the form E ∪ F where E,F ⊆ Fm

are subspaces with dim(E) ≤ n, dim(F ) < r and E is s-sparse.

Proof. (1 ⇒ 2): Suppose dV (t) > rank(A) − r. By the definition of in-

ner dimension 6.1.2, there exists a subspace U ⊆ Fm, dim(U) ≤ dim(V ) =
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rank(A) = n, U is s-sparse and dim(U ∩ V ) > rank(A) − r. In other words,

there exists a subspace W ∈ Fm with dim(W ) < r such that V = U ∪W . Let

C ∈ Fm×n be a s-row sparse basis matrix of U and B ∈ Fm×n a basis matrix

of W . There exists an invertible matrix T ∈ Fn×n such that

A = C × T +B

This implies A× T−1 = C +B × T−1 is not (r, s)-row rigid because rank(A×

T−1 − C) = rank(B × T−1) < r. This means that A is not (r, s)-strongly row

rigid and leads to a contradiction.

(2 ⇒ 3): Because dV (s) ≤ rank(A) − r, for all subspaces E ⊆ Fm such that

dim(E) ≤ n = dim(V ) and E is s-sparse, we have dim(V ∩ E) ≤ n− r. That

is, for any subspace F ⊆ Fm with V ⊆ E ∪ F , we have

n− r ≥ dim(V ∩ E) = dim(V ) + dim(E)− dim(V ∪ E)

≥ dim(V ) + dim(E)− dim(E ∪ F )

= dim(V ) + dim(E)− dim(E)− dim(F ) + dim(E ∩ F )

= n− dim(F ) + dim(E ∩ F )

This implies dim(F ) ≥ r.

(3⇒ 1): Take any invertible T ∈ Fn×n, if we write

A× T = C +B

where C ∈ Fm×n be a s-row sparse and B ∈ Fm×n. Let E be the columns space

of C and F the columns space of B. Because T is invertible and, rank(A×T ) =

rank(A) = dim(V ). As we have just seen, dim(F ) ≥ r, hence rank(B) > r

and thus A must be (r, s)-strongly row rigid.
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6.1.2 Linear Data Structures and Outer Dimension

A linear data structure problem with m queries over a field F and

an input database x ∈ Fn is defined by a matrix V ∈ Fm×n. Each row Vi is a

query of V and the answer to the ith query os given by 〈Vi, x〉 = (V x)i ∈ F.

An (s, t) linear data structure D for the problem V in the cell-probe model

is a pair D = (P,Q) where P ∈ Fs×n is a processing map that encodes the

database x into s memory cells and Q ∈ Fm×s is a query map that answers

every query of V by probing at most t memory cells. For simplicity, we give

the following definition of linear data structure.

Definition 6.1.4 (Linear Data Structure, [DGW19]). We say that an (s, t)

linear data structure D = (Q,P ) computes a matrix V ∈ Fm×n if V can be

decomposed as

V = Q · P

where Q ∈ Fm×s is t-row sparse and P ∈ Fs×n.

The following lemma shows that if a matrix cannot be computed by a

linear data structure, then it must have large outer dimension.

Lemma 6.1.4 ([DGW19]). Let matrix A ∈ Fm×n have rank n and let V ⊆ Fm

be its columns space. Then there is an (s, t) linear data structure computing

A if and only if DV (s) ≤ s.

Proof. Suppose the (s, t) linear data structure D = (Q,P ) compute A. Then

we have

A = Q · P

where Q ∈ Fm×s is t-row sparse and P ∈ Fs×n. Let U be the column space of

A. Then U is t-row sparse and V ⊆ U . This implies DV (s) ≤ dim(U) ≤ s.
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On the other hand, suppose DV (s) ≤ s, then there exists a t-sparse subspace

U ⊂ Fm with V ⊂ U, dim(U) ≤ s. Let Q ∈ Fm×s be a t-row sparse matrix

whose columns generate U . Then as V ⊂ U , each column of A can be written

as a linear combination of the columns of Q. In other words, there exists a

matrix P ∈ Fs×n such that A = Q · P .

6.1.3 Data Structure Lower Bounds Imply Strong Row Rigidity

We are now ready to prove the main result in [DGW19].

Theorem 6.1.5 ([DGW19]). Let ε > 0 be a constant. If the linear map given

by a matrix M ∈ Fm×n cannot be solved by an( n

1− ε
, (t− 1) · log(n/t)

log(1/ε)

)
linear data structure, then M contains an (εn′, t)-row rigid submatrix M ∈
Fm×n′ for some n′ ≥ t.

Proof. Let V be the column space of M . Since M ∈ Fm×n cannot be solved

by the specified linear data structure, by Lemma 6.1.4, we have

DV ((t− 1) · log(n/t)

log(1/ε
)) >

n

1− ε
Set

k =
log(n/t)

log(1/ε)

By Theorem 6.1.1, M contains a submatrix M ′ ∈ Fm×n′ , whose column space

is V ′ with

dV ′(t) ≤ rank(M ′)− εn′

for

n′ ≥ nεk = nε
log(n/t)
log(1/ε) = n · t

n
= t

By Lemma 6.1.3, we have that M ′ is (εn′, t)-row rigid.
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6.2 Linear Data Structures and Rigid Sets

In this section, we discuss the connection between data structure lower

bounds and rigid sets, established by [RR20].

6.2.1 Systematic Linear Data Structure Model

The task of the inner product problem is to preprocess a vector

v ∈ Fn2 to compute inner products. The queries are specified by a set Q ⊆ Fn2 ,

called query set, and the data structure computes the inner product 〈q, v〉 of

v and any query q ∈ Q. During preprocessing, a systematic linear data

structure model stores v and k extra bits, which are the evaluations of k

linear functions 〈a1, v〉, ..., 〈ak, v〉 where a1, ..., ak ∈ Fn2 . To compute the answer

on query q, the data structure outputs a linear combination of these k bits

and any d entries from v.

Definition 6.2.1 (Systematic Linear Model). Let the systematic linear data

structure model be defined above. For a set Q ⊆ Fn2 , we define the time

T (Q, k) by

T (Q, k) := max
v∈Fn2

(
min{d| can compute 〈q, v〉∀q ∈ Q as a linear combination

of k extra bits and any d bits of v}
)

where we are only allowed to output a linear function of k precomputed linear

functions of v along with any d bits of v.

The following theorem states the equivalence of rigid sets and the data

structure lower bound of the systematic linear model.

Theorem 6.2.1 ([RR20]). A set Q ⊆ Fn2 is (n, k, d)-rigid if and only if

T (Q, k) ≥ d.
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Proof. (⇐) Suppose thatQ is not (n, k, d)-rigid. That is, there is a k-dimensional

subspace U ⊆ Fn2 such that dist(q, U) < d for all q ∈ Q. Let v ∈ Fn2 be

the input data and {b1, ..., bk} be a basis of U . Let the data structure store

〈b1, v〉, ..., 〈bk, v〉. Then, there exists a qu ∈ U such that

dist(q, qu) < d

Because qu is a linear combination of {b1, ..., bk}, we have T (Q, k) < d.

(⇒) Suppose that Q is (n, k, d)-rigid. Let {e1, ..., en} be the standard basis

and t = T (Q, k) be the query time. Let the evaluations of k linear functions

〈a1, v〉, ..., 〈ak, v〉, where a1, ..., ak ∈ Fn2 , be given and let U = span(a1, ..., ak).

Because Q is (n, k, d)-rigid, there exists a q∗ ∈ Q such that

dist(q∗, U) ≥ d

Let q∗ be the query and assume that we can access bits vi1 , ..., vit of v. Let

V = span(a1, ..., ak, ei1 , ..., eit)

Then

dist(q∗, U) ≤ dist(q∗, V ) + t

It remains to show that dist(q∗, V ) = 0, which would imply d ≤ dist(q∗, U) ≤
t = T (Q, k). Suppose that dist(q∗, V ) ≥ 1, there exists a vector y ∈ Fn2 such

that 〈y, q∗〉 = 1 and 〈y, x〉 = 0 for all x ∈ V . This implies

〈y + v, x〉 = 〈y, x〉+ 〈v, x〉 = 〈v, x〉

However,

〈q∗, y + v〉 6= 〈q∗, v〉

which implies that the output on query q∗ will err either on v or y + v.
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6.2.2 Linear Data Structure Model

A linear data structure model, on the other hand, stores s bits,

which are the evaluations of s linear functions 〈a1, v〉, ..., 〈as, v〉 where a1, ..., as ∈

Fn2 . To compute the answer on query q, the data structure outputs a linear

combination of these s bits. Notice that the systematic linear model is dif-

ferent, as the query algorithm for the systematic model is not charged for

accessing the k precomputed bits. The time LT (Q, s) for linear model is

defined to be

LT (Q, s) := max
v∈Fn2

(
min{d| can compute 〈q, v〉∀q ∈ Q as a linear combination

of any d bits chosen from the s stored bits}
)

In the linear model, we can simply add the n bits of v by 〈ei, v〉, i ∈ [n].

Taking into account the k precomputed bits that the systematic model can

access without charge, we obtain the desired LT (Q, n+ k) ≤ d+ k. This idea

leads to the following proposition, which gives a simple comparison between

the linear model and the systematic linear model.

Proposition 6.2.2. If T (Q, k) ≤ d, then LT (Q, n+ k) ≤ d+ k.

The following lemma, whose proof is similar to that of Theorem 5.0.1,

says that we can find rigid sets contained in a 2k-dimensional space based on

a given rigid sets in the n-dimensional space.

Lemma 6.2.3. Let S ⊆ Fn2 be (n, k, d)-rigid of size m. Then there exists a set

S ′ ⊆ F2k
2 of size at most m · dn/2ke that is (2k, k, dk/n)-rigid.

Proof. Let r = n/2k. Without loss of generality, assume that r is an integer.

We first split the coordinates into r blocks Z1, Z2, ..., Zr. Let Si, i ∈ [r] be
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the set obtain from S by projecting each vector v ∈ S to the ith block. Let

S ′ =
⋃
i Si. We show that S ′ is (2k, k, dk/n)-rigid. Suppose not. Then there

is a subspace V ⊆ F2k
2 such that dist(v, V ) < dk/n for all v ∈ S ′. Because

every vector s ∈ S is the sum of at most r vectors in S ′, there is a subspace

U ⊆ Fn2 , where each u ∈ U is a vector of r copies of a vector v ∈ V , such

that for all s ∈ S, dist(s, U) ≤ (dk/n) · r = (dk/n) · (n/2k) < d, which is a

contradiction.

The following theorem states the equivalence of rigid sets and the data

structure lower bound of the linear model.

Theorem 6.2.4 ([RR20]). Let k = LT (Q, 3n/2) and Q ⊆ Fn2 of size m be

a query set. Then there exists a (k, k/2, k2/(4n))-rigid set Q′ ⊂ Fn2 with size

m · dn/ke if k ≥ 2
√
n.

Proof. Because k = LT (Q, 3n/2) and k ≤ n, we have that LT (Q, n+k/2) ≥ k.

By Proposition 6.2.2, T (Q, k/2) ≥ k/2. By Theorem 6.2.1, we have Q is

(n, k/2, k/2) rigid. By Lemma 6.2.3, we have that there is a set Q′ of size at

most m · dn/ke and is (k, k/2, k2/(4n))-rigid.
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Chapter 7

Non-Rigidity

To our surprise, many families of matrices we saw before are now known

to be non-rigid, that is, they fail to meet the following goal suggested in the

first chapter: RF
A(n/ log log n) = n1+δ for some δ > 0. This includes some

generating matrices of a good error correcting code (Dvir), many families of

Hadamard matrices [AW15, DL20], and Kronecker products of many smaller

matrices [DL20, Alm21, Kiv21]. In this chapter we present the main tools used

in these proofs, and for simplicity, we restrict ourselves to the binary field F2

throughout this chapter. All the theorems in this chapter can be generalized

to finite fields with slightly different parameters, but the proofs can be a bit

more technical.

7.1 Error Correcting Codes

Based on our observations in previous sections, it is tempting to conjec-

ture that the generating matrices of error correcting codes have high rigidity.

This conjecture, however, is false. We remark that this is not the end for error

correcting codes. As we saw in the first chapter, a random matrix has high

rigidity, meanwhile, as we show below, a random generating matrix G is a

good code with high probability. The observation is that for any nonzero vec-

tor v ∈ {0, 1}k, the vector vG has entries that are distributed uniformly and

independently in {0, 1}n. Let Vol(d, n) denote the volume of the Hamming
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ball with vectors of length n and Hamming weight at most d.

Proposition 7.1.1. If Vol(d − 1, n) < 2n−k then there exists linear code of

dimension k and distance at least d in {0, 1}n.

Proof. Let G be a generating matrix whose entries are chosen uniformly at

random. Let v ∈ {0, 1}k be a nonzero vector. Then the probability that the

vector vG has at most d − 1 entries is thus (Vol(d − 1, n)/2n). As there are

2k − 1 nonzero vectors, as long as

(2k − 1) · Vol(d− 1, n)

2n
< 1

there must exists a linear code of dimension k and distance at least d in

{0, 1}n.

Hence, if n >> d, then Vol(d−1, n)/2n−k << 1, which means a random

generator matrix G is a good code with high probability. Therefore, it is still

possible that some kind of generating matrix of a good code has high rigidity.

The following only says that simply seeking generating matrices of a good code

is not enough; that is, some specific generating matrix of a good code can have

low rigidity.

Theorem 7.1.2 (Dvir). For every sufficiently small constant ε > 0, all suf-

ficiently large k, and every d ∈ [k/4], there exist an n = O(k) and a k-by-n

matrix M such that every non-zero linear combination of the rows of M has

Hamming weight (1/2 ± ε)n but the matrix M has rigidity at most O(kn/d)

with respect to rank 10d log(k/d).

Proof. Let ε > 0 be given. Let k >> d be chosen later. Let r = 10d log(k/d),

m = k + r, c = O(log(1/ε)) and n = Ω(m/ε2)). Let H be a random m-by-n

matrix with each entry set to 1 with probability p = c/d independently.
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Next, choose sufficiently large r such that for a random k-by-r matrix

G′ with entires uniformly chosen in {0, 1} and any linear combination of its

rows yields a vector of weight at least d with high probability. Let G = [Ik|G′],

where Ik is the identity matrix. Then the code generated by G has distance

at least d. Denoting the top k rows of H by S and the remaining rows by H ′

we get GH = IS +G′H ′ = S +G′H ′.

We first show that with high probability, the matrix GH generates a

good code in which all non-zero codewords have weight (1/2 ± ε)n. Let x be

a nonzero vector in {0, 1}k. Observe that xG can be seen as a vector whose

entries, except for the first k ones, are distributed uniformly and independently

in {0, 1}m. Let v = xGH. By the definition of H, each entry in v is a sum of at

least d independent random variables that are each nonzero with probability

p = c/d. Hence, each entry in v is nonzero with probability 1/2± exp(−Ω(c)).

A detailed Proof of this claim is presented in Section 0.1 in the appendix.

Now we show that GH does not have rigidity 2p · kn = 2c · kn/d with

respect to rank r = 10d log(k/d). Observe that, with high probability, the

matrix S has weight at most 2p · kn = 2c · kn/d. On the other hand, G′ is

an k-by-r matrix, which implies that G′H ′ has rank at most r = 10d log(k/d).

Hence, GH = S + G′H ′ does not have rigidity 2c · kn/d with respect to rank

r = 10d log(k/d).

7.2 Preliminaries

Before getting into more non-rigidity results, we first introduce some

results that are useful for the rest of the chapter.
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7.2.1 Chernoff Bound

Theorem 7.2.1 (Chernoff Bound, [Che81], See [CCG+06], Theorem 2.4). Let

X1, ..., Xn be independent random variables with P[Xi = 1] = pi,P[Xi = 0] =

1−pi Let X = X1 + ...+Xn and µ = E[X]. Then for every real number a > 0,

P[X ≤ µ− λ] ≤ e−λ
2/2µ,P[X ≥ µ+ λ] ≤ e−λ

2/2(µ+λ/3)

Lemma 7.2.2. Let 0 < ε < 1/2. Then

(1/2−ε)n∑
i=0

(
n

i

)
=

n∑
i=(1/2+ε)n

(
n

i

)
≤ 2(1−Ω(ε2))n

Proof. We present a proof via probabilistic method. Let x ∈ {0, 1}n be picked

uniformly random. For i ∈ n, let Yi = I{xi = 1} be the indicator random

variable of whether xi equals 1. Then Yi is a Bernoulli random variable with

P[Yi = 1] = 1/2. Let Y =
∑n−1

i=0 Yi. Notice that Y is the number of 1’s in a

given vector x and

(1/2−ε)n∑
i=0

(
n

i

)
= 2nP[Y ≤ (1/2− ε)n].

By Chernoff Bound,

(1/2−ε)n∑
i=0

(
n

i

)
= 2nP[Y ≤ (1/2− ε)n] ≤ 2ne−

(εn)2

2(1/2)n = e−ε
2n ≤ 2(1−Ω(ε2))n

Via symmetry, we conclude the proof.

7.2.2 Binary Entropy

Definition 7.2.1. Let 0 ≤ ε ≤ 1. Then the binary entropy function H is

defined as

H(δ) = −δ log2 δ − (1− δ) log2(1− δ)
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Lemma 7.2.3. For for sufficiently small δ,H(δ) ≤ Θ(δ log2(1/δ)).

Proof. Notice that for all real s > 0, s− 1 ≥ ln s. Equivalently, 1− 1/s ≤ ln s.

Letting s = 1− δ, we have ln(1− δ) ≥ −δ/(1− δ). Thus,

− ln(1− δ) ≤ δ

1− δ

Now,

H2(δ) = −δ log2 δ − (1− δ) log2(1− δ)

= δ log2(1/δ) + (1− δ)(− log2(1− δ))

= δ log2(1/δ) +
(1− δ)(− ln(1− δ))

ln 2

≤ δ log2(1/δ) +
δ

ln 2
= Θ(δ log2(1/δ))

for sufficiently small δ.

We state the following lemma without proof.

Lemma 7.2.4 (Volume of a Hamming Ball, See [GRS12] Proposition 3.3.1).

For 0 ≤ δ ≤ 1/2, (
n

δn

)
≤

δn∑
i=0

(
n

i

)
≤ 2nH(δ)

Combining the last two lemmas we immediately get the following corol-

lary.

Corollary 7.2.5. For for sufficiently small δ,

δn∑
i=0

(
n

i

)
≤ 2Θ(δ log2(1/δ))n
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7.3 Polynomial Methods

Proving non-rigidity of a target matrix M via polynomial methods

consists of the following two main steps.

1. Construct a low rank matrix M ′ approximating the target matrix M .

To do this, we first find a low degree polynomial p, whose corresponding

matrix M ′ approximates the target matrix M . Then we observe that

the low degree of p would imply the low rank of M ′.

2. Each row of the matrix M −M ′ will have a small number of non-zero

entries.

We illustrate these two steps by proving the non-rigidity of Walsh-

Hadamard Matrices [AW17] and matrices of the form Mx,y = f(x + y) for

arbitrary function f : {0, 1}n → {0, 1} [CLP17]. Using more technically in-

volved polynomials, Dvir and Liu show that generalised Hadamard matrices

also fail to be rigid, but we omit this result in our discussion and refer the

readers to their paper [DL20]. Before we get into the results, we introduce a

lemma, which states that for a given polynomial p, the rank of the truth table

matrix M , defined by

Mx,y := p(x, y)

for any x, y ∈ {0, 1}n, is at most the number of monomials of p.

Lemma 7.3.1 ([AW17]). Let p : {0, 1}2n → {0, 1} be a polynomial with m

monomials and let M be a 2n × 2n be the truth table matrix of p. Then the

rank of M is at most m.

Proof. Let a1, ..., am, b1, ..., bm : {0, 1}n → {0, 1} be monomials such that

p(x, y) =
∑m

i=1 ai(x)bi(y) is the monomial expansion of p. For each 1 ≤ i ≤ m,
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we can define a vector ~ai by ~aix = ai(x) for all x ∈ {0, 1}n and similarly a

vector ~bi by ~biy = bi(y) for all y ∈ {0, 1}n. Then we see that

M =
m∑
i=1

~ai ⊗ ~bi

where ⊗ denotes the outer product. Thus, rank(M) ≤ m.

7.3.1 Walsh-Hadamard Matrices

In this section, we let H = ((−1)〈x,y〉)x,y∈{0,1}n be the Walsh-Hadamard

matrix. The following theorem implies that a Walsh-Hadamard matrix is not

rigid enough.

Theorem 7.3.2 ([AW17]). For every sufficiently small ε > 0, and for all n,

we have

RH(2(1−Ω(ε2))n) ≤ 2O(1+ε log(1/ε))n

We first introduce a few tools from polynomial methods for the first

step. That is, we introduce a polynomial that approximates the Walsh-

Hadamard matrices.

Proposition 7.3.3 (Low-degree polynomial approximating Walsh-Hadamard

matrices, [AW17]). For every 0 < ε < 1/2, there is a multilinear polynomial

p : {0, 1}2n → {0, 1} with at most 2(1−Ω(ε2))n monomials, such that for all

x, y ∈ {0, 1}n, with 〈x, y〉 ∈ [2εn, (1/2 + ε)n],

p(x, y) = (−1)〈x,y〉

To to prove this proposition, we need an auxiliary lemma from [AW15],

which we state without proof.
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Lemma 7.3.4 (Polynomial Interpolation, [AW15]). For any integers n, r, k

with n ≥ r + k and any c1, . . . , cr ∈ {0, 1}, there is a multivariate polynomial

q : {0, 1}n → {0, 1} of degree r− 1 with integer coefficients such that q(z) = ci

for all z ∈ {0, 1}n with Hamming weight |z| = k + i, 1 ≤ i ≤ r.

Proof of Proposition 7.3.3. Set

k = 2εn− 1, r = (
1

2
− ε)n+ 1, ci = (−1)k+i

By Lemma 7.3.4, we have a multivariate polynomial q : {0, 1}n → {0, 1} with

degree ≤ (1/2−ε)n such that for |z| ∈ [2εn, (1/2+ε)n], q(z) = ci = (−1)k+i =

(−1)|z|. Define the multilinear polynomial p by setting p(x, y) = q(〈x, y〉).
Notice that as a result of the inner product 〈x, y〉, each monomial of p contains

xi if and only if it also contains yi. The number of monomials in p is thus the

same as the number of monomials of q, who has degree ≤ (1/2 − ε)n. By

Lemma 7.2.2, the number of monomials in p is thus upper bounded by

(1/2−ε)n∑
i=0

(
n

i

)
≤ 2(1−Ω(ε2))n

Simply using the truth table matrix of the polynomial p in the last

proposition isn’t quite enough. We introduce a few more tools to improve

our approximation without increasing the rank too much. Since changing one

column or one row can only change the rank of a matrix by 1, the following

lemma is immediate.

Lemma 7.3.5 ([AW17]). Let M ′ be a matrix of rank r. Let M be a matrix

which is equal to M ′ except in at most k columns and l rows. Then the rank

of M is at most r + k + l.
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Note that the number of vectors v ∈ {0, 1}n with |v| /∈ [(1/2−ε)n, (1/2+

ε)n] is at most

(1/2−ε)n∑
i=0

(
n

i

)
+

n∑
i=(1/2+ε)n

(
n

i

)
≤ 2 · 2n−Ω(ε2n)

using Lemma 7.2.2. Applying Lemma 7.3.5 with k = l = 2 · 2n−Ω(ε2n), we get

the following corollary.

Corollary 7.3.6 ([AW17]). Let ε ∈ (0, 1/100). Let T be any 2n×2n matrix and

let M be a 2n×2n matrix of rank r ≥ 2εn, indexed by n-bit vectors. There is a

2n×2n matrix M ′ of rank at most r+4 ·2n−Ω(ε2n) such that M ′(x, y) = T (x, y)

on all x, y ∈ {0, 1}n where at least one of the following holds:

• |x| /∈ [(1/2− ε)n, (1/2 + ε)n],

• |y| /∈ [(1/2− ε)n, (1/2 + ε)n], or

• M(x, y) = T (x, y).

Combining all the tools together, we are now ready to wrap up the first

step, as shown in the next corollary.

Corollary 7.3.7 ([AW17]). For every sufficiently small ε > 0, there is a

matrix M ′ with rank at most 2n−Ω(ε2n), such that

M ′
x,y = (−1)〈x,y〉

for all x, y ∈ {0, 1}n where at least one of the following holds:

• |x| /∈ [(1/2− ε)n, (1/2 + ε)n],

83



• |y| /∈ [(1/2− ε)n, (1/2 + ε)n], or

• 〈x, y〉 ∈ [2εn, (1/2 + ε)n].

Proof. By Proposition 7.3.3, we obtain a multilinear polynomial p : {0, 1}2n →

{0, 1} with at most 2n−Ω(ε2n) monomials, such that for all x, y ∈ {0, 1}n, with

〈x, y〉 ∈ [2εn, (1/2 + ε)n],

p(x, y) = (−1)〈x,y〉

Let M be the truth table matrix of p. Then by Lemma 7.3.1, we have that

rank(M) ≤ 2n−Ω(ε2n). Now, apply Corollary 7.3.6, with T = Hn, we obtain the

desired matrix M ′ with rank at most 2n−Ω(ε2n) + 4 · 2n−Ω(ε2n) = 2n−Ω(ε2n).

For the second step, we aim to show that each row of the matrix M−M ′

will have a small number of non-zero entries, which is presented in the next

lemma.

Lemma 7.3.8 ([AW17]). Let ε ∈ (0, 1/100). For every vector x ∈ {0, 1}n with

|x| ∈ [(1/2 − ε)n, (1/2 + ε)n], there are at most 2O(ε log(1/ε)n) such y ∈ {0, 1}n

satisfying

• |y| ∈ [(1/2− ε)n, (1/2 + ε)n], and

• 〈x, y〉 ≤ 2εn

Proof. Let x ∈ {0, 1}n by a vector with |x| ∈ [(1/2 − ε)n, (1/2 + ε)n]. Fix

k ∈ [(1/2− ε)n, (1/2 + ε)n] and s ≤ 2εn. We count the number of y ∈ {0, 1}n

with |y| = k and 〈x, y〉 = s. Notice that a vector y satisfies these two properties

if and only if
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• there is some set S ⊆ [n] with |S| = s and xi = yi = 1 for all i ∈ S.

• there is some set T ⊆ ([n] \ S) with xj = 0, yj = 1 for all j ∈ T .

In other words, with fixed x, k, s, we have at most(
|x|
s

)(
n− |x|
k − s

)
choices of y. Now, counting all possible choices of k, s, we have the number of

y meeting the statement in the lemma is

(1/2+ε)n∑
k=(1/2−ε)n

2εn∑
s=0

(
|x|
s

)(
n− |x|
k − s

)
≤

(1/2+ε)n∑
k=(1/2−ε)n

2εn∑
s=0

(
(1/2 + ε)n

s

)(
(1/2 + ε)n

k − s

)

≤ 4ε2n2

(
(1/2 + ε)n

2εn

)(
(1/2 + ε)n

(1/2− 3ε)n

)
≤ 2O(nH( 4ε

1/2+ε
)) = 2O(ε log(1/ε)n)

by applying Lemma 7.2.3 and Lemma 7.2.4.

Notice that M ′ and Hn can only differ in indices (x, y) where |x|, |y| ∈
[(1/2 − ε)n, (1/2 + ε)n] and 〈x, y〉 ≤ 2εn. So for each fixed x, the number of

y’s that would cause M ′ and Hn to differ is at most 2O(ε log(1/ε)n) as shown in

the lemma above. Therefore, M ′ and Hn differ in at most 2n · 2O(ε log(1/ε)n) =

2O(1+ε log(1/ε))n entries. In other words, we reach the following conclusion

RHn(2(1−Ω(ε2))n) ≤ 2O(1+ε log(1/ε))n

which complete the proof for Theorem 7.3.2.

7.3.2 Matrices Mx,y = f(x+ y)

In this subsection, we show the following result following the two steps

outlined at the beginning of the section.
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Theorem 7.3.9 ([DE19]). Let f : {0, 1}n → {0, 1} and set matrix M ∈
{0, 1}2n×2n with Mx,y = f(x + y) for x, y ∈ {0, 1}n. Then for all any ε > 0,

there exists an ε′ > 0 such that for sufficiently large n,

RM(2(1−Ω(ε2))n) ≤ 2O(1+ε log(1/ε))n

where N = 2n.

We first introduce some definitions. Let F(n) be the family of functions

f : {0, 1}n → {0, 1}. Let Md(n) be the family of monomials of degree at most

d, i.e.

Md(n) = {xa11 . . . xann |ai ∈ {0, 1},
n∑
i=1

ai ≤ d}

and md(n) = |Md(n)|. The following lemma, which we state without proof,

says that the rank of a matrix Mx,y = p(x + y) is low if p does not have a

degree that is too high.

Lemma 7.3.10 (Croot-Lev-Pach Lemma, [CLP17]). Let p : {0, 1}n → {0, 1}
be a polynomial of degree at most d and set matrix M ∈ {0, 1}2n×2n with

Mx,y = p(x+ y) for x, y ∈ {0, 1}n. Then

rank(M) ≤ 2 ·mbd/2c(n)

The next lemma says that any function can be approximated by a

polynomial with sufficiently high degree.

Lemma 7.3.11 (Polynomials Approximates any Function, [DE19]). Let f :

{0, 1}n → {0, 1} ∈ F(n). Then for all d ≤ n, there exists a polynomial

p : {0, 1}n → {0, 1} of degree at most d satisfying

|{x ∈ Fn2 |f(x) 6= p(x)}| ≤ 2n −md(n)
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Proof. We view F(n) as a linear space V . Naturally, the space of polynomials

of degree at most d, which we denote as W , is a linear subspace of V . Notice

that for any vector v in V , we can decompose it as

v = w + u

a vector w ∈ W and u ∈ V \W and u has weight at most dim(V )− dim(W ).

To translate back the context of functions and polynomials, we have that

|{x ∈ Fn2 |f(x) 6= p(x)}| ≤ dim(V )− dim(W )

= dim(V )− dim(Md(n)) = 2n −md(n)

We are now ready to prove the Theorem 7.3.9.

Proof of Theorem 7.3.9. Let d = (1 − ε)n and f : {0, 1}n → {0, 1} be given.

Let M denote the 2n×2n matrix with Mx,y = f(x+y). Fix x ∈ {0, 1}n. Using

Lemma 7.3.11, we can find a polynomial p of degree at most d with

|{y ∈ Fn2 |f(x+ y) 6= p(x+ y)}| ≤ 2n −md(n) = 2n − (2n −mεn(n)) = mεn(n)

=
εn∑
i=0

(
n

i

)
≤ 2Θ(ε log2(1/ε))n

by Corollary 7.2.5. Let L denote the 2n × 2n matrix with Lx,y = p(x + y).

Then M and L differ in at most 2Θ(ε log2(1/ε))n entries for a fixed row indexed

by x. Thus, they differ in at most 2n · 2Θ(ε log2(1/ε))n = 2Θ(1+ε log2(1/ε))n entries

in total. Using the Croot-Lev-Pach Lemma 7.3.10 and Lemma 7.2.2, we have

rank(L) ≤ mbd/2c(n) = mb(1−ε)n/2c(n) =

(1/2−ε)n∑
i=0

(
n

i

)
≤ 2(1−Ω(ε2))n

We thus conclude the proof.
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7.4 Kronecker Products

A very recent line of work has found that if a matrix M can be written

as Kronecker products of many matrices, then M is not rigid [DL20, Alm21,

Kiv21]. The key definition for these work is the row-column rigidity.

Definition 7.4.1 (Row-Column Rigidity, [DL20], [Alm21]). For a matrix A ∈

Fn×n and a target rank 0 ≤ r ≤ n, we define the row-column rigidity Rrc
A (r)

as the minimal number t such that there exists a matrix B ∈ Fn×n with at

most t non-zero entries at each row and column, and rank(A+B) ≤ r.

It is easy to see that if a matrix A is not row-column rigidity, then

simply by changing sufficient number of entries in each row, A won’t be rigid

in the general notion. Notice that the row-column rigidity of a permutation

matrix or a diagonal matrix is 1. The following lemma says that if two matrices

A,B are not row-column rigid, then the product A · B would also fail to be

row-column rigid. This is the key observation that allows us to study the

non-rigidity of matrices via matrix factorization.

Lemma 7.4.1 ([DL20]). For matrices A,B ∈ Fn×n,

Rrc
A·B(r + s) ≤ Rrc

A (r) · Rrc
B (s)

Proof. We can decompose A,B as sums of low rank matrices and sparse ma-

trices. That is, we write A = LA + SA, B = LB + SB where rank(LA) ≤

r, rank(LB) ≤ s and SA has at most Rrc
A (r) at each row and column and SB

has at most Rrc
B (s) at each row and column. Then,

AB = (LA + SA)(LB + SB) = LA(LB + SB) + SALB + SASB
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where rank(LA(LB + SB)) ≤ rank(LA) ≤ r, rank(SALB) ≤ rank(LB) ≤ s. It

remains to show that SASB is sparse. For a fixed row i of SASB, since there are

at most Rrc
A (r) nonzero entries of the ith row of SA and at most Rrc

B (s) nonzero

entries of each row of SB, SASB will have at most Rrc
A (r) ·Rrc

B (s) entries in the

ith row. The rest of the proof follows a similar argument.

The main goal of this section is to prove the following.

Theorem 7.4.2 ([Alm21, Kiv21]). For matrices M1, . . . ,Mn ∈ {0, 1}2×2, and

sufficiently small ε > 0, the Kronecker product M :=
⊗n

`=1M`,M` ∈ F2×2 has

Rrc
M(2(1−Ω(ε2))n) ≤ 2Θ(2ε log2(1/(2ε)))n

and

RM(2(1−Ω(ε2))n) ≤ 2(1+Θ(2ε log2(1/(2ε))))n

We remark that Alman and Kivva used different matrix factorizations

to prove the previous theorem. We give yet another factorization in the proof

presented below.

7.4.1 LPU Factorization

In this section we introduce some basic facts on LPU factorization and

Kronecker products.

Theorem 7.4.3 (LPU factorization, See [HJ12] Theorem 3.5.11). Let M be

a square matrix. Then there exists a weighted permutation matrix P , a lower

triangular matrix L and an upper triangular matrix U such that M = LPU .

Lemma 7.4.4 (Extended Mixed-product Property).

(L1 × P1 × U1)⊗ (L2 × P2 × U2) = (L1 ⊗ L2)(P1 ⊗ P2)(U1 ⊗ U2)
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Proof. We use the mixed-product property (A⊗B)(C⊗D) = (AC)⊗ (BD).

(L1 × P1 × U1)⊗ (L2 × P2 × U2) = ((L1 × (P1 × U1))⊗ (L2 × (P2 × U2))

= (L1 ⊗ L2)((P1 × U1)⊗ (P2 × U2))

= (L1 ⊗ L2)(P1 ⊗ P2)(U1 ⊗ U2)

Using Extended Mixed-product Property, we immediately obtain the

following:

Theorem 7.4.5. Let M =
⊗n

i=1Mi for any matrices M1 = L1 × P1 ×
U1, . . . ,Mn = Ln × Pn × Un ∈ Fq×q. Then

M = L× P × U

where L =
⊗n

i=1 Li, P =
⊗n

i=1 Pi, U =
⊗n

i=1 Ui.

7.4.2 Non-Rigidity of U

For i ∈ {1, ..., n}, let Ui ∈ F2×2 be upper triangular matrices. Let

U =
⊗n−1

i=0 Ui. Notice that U is also upper triangular. In this section, we show

that U is not rigid.

Theorem 7.4.6. For i ∈ {1, ..., n}, let Ui ∈ F2×2 be upper triangular matrices.

Let U =
⊗n

i=1 Ui. Then for sufficiently small ε > 0 and sufficiently large n,

we have

Rrc
U (2(1−Ω(ε2))n) ≤ 2Θ(2ε log2(1/(2ε)))n

Let V (1) ∈ F2×2 be an all one upper triangular matrix:

V (1) =

[
1 1
0 1

]
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For any integer n > 1, we let V (n) = V (1)
⊗

V (n−1). The following lemma

reveals exactly when V
(n)
x,y = 1 for x, y ∈ {0, 1}n.

Lemma 7.4.7. For x, y ∈ {0, 1}n, we have V
(n)
x,y = 1 if and only if for all

i ∈ {0, ..., n− 1}, xi ≤ yi.

Proof. We prove this by induction. Since V (1) is the all one upper triangular

matrix, the base case is true. For for any x ∈ {0, 1}n, let x′ = x1x2...xn−1

denote the last n− 1 bits of x and y′ = y1y2...yn−1 denote the last n− 1 bits

of y. Inductively, since V (n) = V (1)
⊗

V (n−1), we have that

V (n)
x,y = V (1)

x0,y0
· V (n−1)

x′,y′

which equals 1 if and only if V
(1)
x0,y0 = V

(n−1)
x′,y′ = 1. By inductive hypothesis,

x0 ≤ y0 and for all i, x′i ≤ y′i.

We are now ready to prove Theorem 7.4.6.

Proof of Theorem 7.4.6. We first prove the non-rigidity of V (n). There are two

main parts of this proof. Firstly, let W be a 2n × 2n matrix with Wx,y = 1 if

and only if one of the following holds:

• |x| /∈ [(1/2− ε)n, (1/2 + ε)n], or

• |y| /∈ [(1/2− ε)n, (1/2 + ε)n].

As we have seen before in the proof of Corollary 7.3.7, we have rank(W ) ≤

2(1−Ω(ε2))n. Fix a row x ∈ [(1/2− ε)n, (1/2 + ε)n]. We now bound the number

of y ∈ [(1/2− ε)n, (1/2 + ε)n] such that V
(n)
x,y = 1. By Lemma 7.4.7, V

(n)
x,y = 1

if and only if xi ≤ yi for all i ∈ {0, ..., n − 1}. So for the indices i such that
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xi = 1, we must have yi = 1. Notice that |y| ≤ (1/2+ε)n and |x| ≥ (1/2−ε)n.

This means that the number of possible y’s given a fixed x is at most

2εn∑
i=0

(
n

i

)
≤ 2Θ(2ε log2(1/(2ε)))n

by Corollary 7.2.5. As a last step, notice that our argument only depends

on the upper-triangular property of V (1), but not the actual values in the

upper-triangular part of V (1). Thus, the same argument applies to U .

Combining Theorem 7.4.5, Lemma 7.4.1 and Theorem 7.4.6, we reach

Theorem 7.4.2.

With more involved techniques, Dvir and Liu observe that infinitely

many matrices in a family of Fourier transform matrices can be written as

Kronecker products of generalised Hadamard matrices, which leads to the

discovery that many Fourier transform matrices are not rigid. With the ob-

servation that circulant matrices can be factorized into products of Fourier

transform matrices and diagonal matrices, Dvir and Liu show that circulant

matrices fail to be rigid too. For more discussion, we refer the reader to

[DL20, BK21].
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Appendix
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0.1 How to get an almost fair coin?

Observe a sequence of bits x = x1x2...xd. Each bit xi is 1 with proba-

bility c/d, c ≤ 0.5d and is 0 otherwise. Then the parity of this sequence has

only exponential bias. Concretely,

P[χ(x) = 1] =
1

2
± exp(Ω(c))

This claim turns out extremely easy to show with a basic introduction

of finite, irreducible, ergodic Markov chains.

0.1.1 Crash Course Markov Chains

Let S be a finite state space with positive integers and T be a subset of

[0,∞). A stochastic process is a collection of random variables {Xn : n ∈ T}
which take values from S. Let {Xn, n = 0, 1, 2, ...} be a stochastic process that

takes on values from S. If Xn = i, we say that the process is in state i at time

n. Suppose that

P[Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X1 = i1, X0 = i0] = P[Xn+1 = j|Xn = i] = pi,j

for all states i0, i1, ..., i, j ∈ S and all n ≥ 0. Such a stochastic process is called

a finite Markov chain. The transition matrix P= (pi,j) is a |S| × |S|
matrix of transition probabilities

P =


p00 p01 p02 · · ·
p10 p11 p12 · · ·
...

...
...

pi0 pi1 pi2 · · ·
...

...
...


In our example, we have two states, 0 and 1. Let p = 1 − c/d and

q = c/d. If we are at state 0 during time n, i.e. χ(x1x2...xn) = 0, then we will
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remain in state 0 with probability p and transition to state 1 with probability

1. Thus, we obtain our transition matrix

Q =

[
p q
q p

]
We say that a finite Markov chain is irreducible if and only if its graph

representation is a strongly connected graph. Apparently, Q is irreducible,

whose graph representation is shown below.

0.1.1.1 Periodicity

The period of a state i is the largest common devisor of the set {n :

pi,i(n) > 0, n ≥ 1}. We write d(i) = gcd{n : pi,i(n) > 0, n ≥ 1}. We call state

i periodic if d(i) > 1 and aperiodic if d(i) = 1. We notice that in Q, pi,i > 0

for i = 0, 1 in our example. This means that in each step, we can get back

to the last state with positive probability. In this case, our Markov chain is

aperiodic.

0.1.1.2 Recurrence

Let fi,i(n) = P[Xn = i,Xk 6= i for 0 < k < n|X0 = i] and let fi,i be the

probability that given X0 = i, Xn = i for some n > 0. That is,

fi,i =
∞∑
n=1

fi,i(n)
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State i is said to be recurrent if fi,i = 1; on the other hand, we say that state

i is transient if fi,i < 1. For a recurrent state, the mean recurrence time

µi is define as

µi =
∑
n

nfi,i(n)

A recurrent state i is called positive recurrent if µi < ∞. Notice that a

recurrent state i can have infinite mean recurrence time, in this case, we call

such a state null recurrent. A state is said to be ergodic if it is positive

recurrent and aperiodic. A Markov chain is ergodic if all its states are ergodic.

In our example, if we start from state 0, then in the next coin flip, we

either get 0 with probability p, or get 1 with probability q. If we get a 1, we

must wait until the next time to flip a 1 to get back to 0. That is,

µ0 =
∑
n

nf0,0(n) = p+ q
∞∑
k=0

(k + 1)pkq

Similarly, we obtain

µ1 =
∑
n

nf1,1(n) = p+ q
∞∑
k=0

(k + 1)pkq

Notice that
∑∞

k=0 kp
kq is the expectation of a geometric distribution with

probability q and
∑∞

k=0 p
kq is the sum of the probability mass of the same

geometric distribution. Thus, as
∑∞

k=0(k + 1)pkq =
∑∞

k=0 kp
kq +

∑∞
k=0 p

kq =

1/q + 1,

µ0 = µ1 = p+ q · (1/q + 1) = 2

Hence, both states of our Markov chain are positive recurrent. In fact, this

Markov chain is ergodic.
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0.1.1.3 Stationary distribution

A stationary distribution of a Markov chain is a probability distribution

π̄ such that π̄P = π̄. In fact, any finite, irreducible, and ergodic Markov chain

has a unique stationary distribution π̄ = (π0, π1, ..., πn), with π0 +π1 + ...+

πn = 1 (Theorem 7.7 in [MU17]). Hence, for our example,

π̄Q = (π0, π1)

[
p q
q p

]
= π̄, π0 + π1 = 1

gives us π0 = π1 = 1/2. This tells us that if you flip a biased coin for an

infinite number of times, you can get a fair coin. In other words,

P[χ(x1x2...) = 1] = 1/2

How fast does the probability converge to 1/2 with respect to the num-

ber of coin tosses? In fact, this convergence is geometric.

Theorem 0.1.1 (Theorem 12.5 in [MU17]). Let π̄ni represent the distribution

of the state of the chain starting at state i after n steps. Let P be the transition

matrix for a finite, irreducible, aperiodic Markov chain. Let mj be the smallest

entry in the jth column of the matrix, and let m =
∑

jmj. Then for all i and

n,

||π̄ni − π̄|| ≤ (1−m)n.

Now we are ready to conclude our motivating example. Since c ≤ 0.5d,

we have q < p. Thus, if we take d coin tosses,

||π̄n0 − π̄|| ≤ (1− 2q)d = (1− 2 · c
d

)d ≤ exp(−2c)
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