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1 MOTIVATION

1 Motivation

1.1 Boolean Functions v

Usually, a Boolean function f maps a length-n binary vector, or string, into a single binary value, or bit. The
most basic examples seen in computer science are

∨ OR(x1, x2, ..., xn)
∧ AND(x1, x2, ..., xn)
⊕ PARITY(x1, x2, ..., xn)

In graph theory, given an undirected graph G = (V,E), |V | = m where the ordering of the adjacency matrix is
pre-specified, we can represent the graph G as a binary string of length n =

(
m
2

)
. Hence, for instance, we can view

the algorithm for the clique problem as a Boolean function. That is, the algorithm that determines if a k clique
exists in a graph with m vertices can be written as

CLIQUEk,m : {0, 1}(
m
2 ) → {0, 1} (1.1.1)

Generalising this idea, we can also define a Boolean function g : {0, 1}2n → {0, 1}2n that maps a string to another
string. For example, binary integer multiplication takes in two n-bit strings and outputs a 2n-bit string.
In fact, any discrete yes-no problem can be viewed as searching for a family of Boolean functions that maps a
fixed-length string to a bit, since a language L ∈ {0, 1}∗ can be divided into disjoint slices

L =
⋃
n

Ln where Ln ∈ {0, 1}n (1.1.2)

1.2 Truth Table and Normal Forms v

A Boolean function f : {0, 1}n → {0, 1} can also be viewed as a truth table. Specifically, given a pre-specified
ordering, we will have a table with 2n indices, each of which denotes a n-bit string in {0, 1}n. The entires of the
table are simply binary numbers. For example, a function f : {0, 1}3 → {0, 1} may be represented as below

000 0
100 0
010 0
001 1
011 1
101 1
110 1
111 1

Any Boolean function can be expressed as a disjunctive normal form. The DNF of the above example is

(x̄1 ∧ x̄2 ∧ x3) ∨ (x̄1 ∧ x2 ∧ x3) ∨ (x1 ∧ x̄2 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3) ∨ (x1 ∧ x2 ∧ x3) (1.2.1)
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2 FOURIER EXPANSION

2 Fourier Expansion

2.1 DNF to Polynomial v

Notation 2.1. Given α ∈ {0, 1}, we write

xαi =

{
xi if α = 1

x̄i if α = 0
(2.1.1)

Then given a string a1a2...an, we have that xa11 xa22 ...xann = 1 if and only if x and a are equal.

Hence, we obtain
xa11 xa22 ...xann =

∏
i:ai=1

xi
∏
i:ai=0

x̄i =
∏
i:ai=1

xi
∏
i:ai=0

(1− xi) (2.1.2)

The second equality follows from that xi is binary. Any disjunctive normal form can be written as the following

f(x) =
∨

a∈{0,1}n,f(a)=1

∏
i:ai=1

xi
∏
i:ai=0

(1− xi) (2.1.3)

Since there is only one element a ∈ {0, 1}n that equals x, we have

f(x) =
∑

a∈{0,1}n,f(a)=1

∏
i:ai=1

xi
∏
i:ai=0

(1− xi) =
∑

a∈{0,1}n
f(a)

∏
i:ai=1

xi
∏
i:ai=0

(1− xi) (2.1.4)

Hence, we obtain a polynomial representation of f(x).

2.2 Fourier Expansion Theorem v

To obtain a simpler representation of the polynomial 2.1.4, we first adapt the following replacement

1 → −1
0 → 1

which gives us
1 + xi

2
=

{
0 if xi = −1

1 if xi = 1

1− xi
2

=

{
1 if xi = −1

0 if xi = 1
(2.2.1)

which allows us to write the counterpart of 2.1.4 as an function f : {−1, 1}n → {0, 1}

f(x) =
∑

a∈{−1,1}n
f(a)

∏
i:ai=−1

1− xi
2

∏
i:ai=1

1 + xi
2

(2.2.2)

We can rewrite f as a function from {−1, 1}n to {−1, 1} by some algebra,

f(x) = 1− 2
∑

a∈{−1,1}n

1− f(a)

2

∏
i:ai=−1

1− xi
2

∏
i:ai=1

1 + xi
2

(2.2.3)

By expanding the polynomial above 2.2.3, we can rewrite f as a sum of monomials

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi (2.2.4)

where
∏
i∈S xi is in fact the parity function and is defined to be 1 if S = ∅ and f̂(S) is the coefficient of the

monomial
∏
i∈S xi.
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2.3 The Orthonormal Basis 2 FOURIER EXPANSION

Remark 2.2. Since xi ∈ {−1, 1}, we see that
∏
i∈S xi = −1 if there is an odd number of −1 or TRUE values,

∏
i∈S xi

is the parity function.

Theorem 2.3 (Fourier Expansion Theorem). Every function f : {−1, 1}n → R can be uniquely expressed as
a multilinear polynomial,

f(x) =
∑
S⊆[n]

f̂(S)xS (2.2.5)

where xS =
∏
i∈S xi. This expression is called the Fourier expansion of f , and the real number f̂(S) is called

the Fourier coefficient of f on S. Collectively, the coefficients are called the Fourier spectrum of f .

We can prove the uniqueness of the multilinear polynomial by showing the linear independence of the 2n

different xS . In fact, we can show that the set of xS forms an orthonormal basis of the space of the functions
f : {−1, 1}n → R.

2.3 The Orthonormal Basis v

Definition 2.4. We define the inner product 〈·, ·〉 on pairs of function f, g : {−1, 1}n → R by

〈f, g〉 = 2−n
∑

x∈{−1,1}n
f(x)g(x) (2.3.1)

From a probabilistic perspective, if we let x be uniformly distributed in {−1, 1}n, we have

〈f, g〉 = Ex∼{−1,1}n [f(x)g(x)] (2.3.2)

Lemma 2.5.
〈f, f〉 = 2−n

∑
x∈{−1,1}n

f(x)f(x) = Ex∼{−1,1}n [f(x)2] (2.3.3)

Theorem 2.6. The 2n different parity functions xS : {−1, 1}n → {−1, 1} form an orthonormal basis for the
vector space V spanned by functions f : {−1, 1}n → R. In other words, for any two sets S, T ∈ {−1, 1}n,

〈xS , xT 〉 =

{
1 if S = T

0 if S 6= T
(2.3.4)

A direct corollary from this theorem shows the uniqueness of the Fourier expansion.

Corollary 2.7. The 2n different parity functions xS : {−1, 1}n → {−1, 1} are linear independent and hence the
scalars f̂(S) of the linear combination of xS

f(x) =
∑
S⊆[n]

f̂(S)xS (2.3.5)

is unique.

Lemma 2.8. For any two sets S, T ∈ {−1, 1}n, we have

xSxT =

{
1 if S = T

xS∆T if S 6= T
(2.3.6)

where S∆T = (S \ T ) ∪ (T \ S) is the symmetric difference of S and T .

Proof. If S = T , we then have xSxT = (xS)2 = 1. If S 6= T , then

xSxT =
∏
i∈S

xi
∏
i∈T

xi =
∏

i∈S∩T
x2
i

∏
i∈S∆T

xi =
∏

i∈S∆T

xi = xS∆T (2.3.7)
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2.3 The Orthonormal Basis 2 FOURIER EXPANSION

Lemma 2.9.

E[xS ] =

{
1 if S = ∅
0 if S 6= ∅

(2.3.8)

Proof. x∅ = 1 by definition. By linearity of expectation, we have

E[xS ] = E[
∏
i∈S

xi] =
∏
i∈S

E[xi] (2.3.9)

Since x is uniformly distributed in {−1, 1}n, xi must be uniformly distributed in {−1, 1}. Hence, E[xi] = 0 and
concludes the proof.

proof of Theorem 2.6. Note that 〈xS , xT 〉 = Ex∼{−1,1}n [xSxT ]. If S = T , we have the expectation is just the
constant 1

Ex∼{−1,1}n [xSxT ] = 1 (2.3.10)

If S 6= T , we then have
Ex∼{−1,1}n [xSxT ] = Ex∼{−1,1}n [xS∆T ] = 0 (2.3.11)

since S∆T is not empty.
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3 INNER PRODUCT

3 Inner Product

Some results directly following the inner products are shown in this section.

Notation 3.1. We use the notation χS and xS interchangeably to denote
∏
i∈S xi.

Theorem 3.2. For f : {−1, 1}n → R and S ⊆ [n], we have

〈f, χS〉 = f̂(S) (3.0.1)

Proof.

〈f, χS〉 = 〈
∑
T⊆[n]

f̂(T )χT , χS〉

= 2−n
∑

x∈{−1,1}n

∑
T⊆[n]

f̂(T )χT (x)χS(x) by Fourier expansion

=
∑
T⊆[n]

f̂(T )[2−n
∑

x∈{−1,1}n
χT (x)χS(x)] by linearity of expectation

=
∑
T⊆[n]

f̂(T )〈χT , χS〉

= f̂(S) by theorem 2.6

(3.0.2)

Theorem 3.3 (Parseval’s Theorem). For any f : {−1, 1}n → R, we have

〈f, f〉 =
∑
S⊆[n]

f̂(S)2 = Ex∼{−1,1}n [f(x)2] (3.0.3)

This theorem can be seen as a direct corollary from the following theorem.

Theorem 3.4 (Plancherel’s Theorem). For any f, g : {−1, 1}n → R, we have

〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S) = Ex∼{−1,1}n [f(x)g(x)] (3.0.4)

Proof.

〈f, g〉 = 〈
∑
S⊆[n]

f̂(S)χS ,
∑
T⊆[n]

ĝ(T )χT 〉

= 2−n
∑

x∈{−1,1}n

∑
S⊆[n]

f̂(S)χS(x)
∑
T⊆[n]

ĝ(T )χT (x) by Fourier expansion

=
∑
S⊆[n]

∑
T⊆[n]

f̂(S)ĝ(T )[2−n
∑

x∈{−1,1}n
χS(x)χT (x)] by linearity of expectation

=
∑
S⊆[n]

∑
T⊆[n]

f̂(S)ĝ(T )〈χS , χT 〉

=
∑
S⊆[n]

f̂(S)ĝ(S) by theorem 2.6

(3.0.5)

Note that 〈f, g〉 can be seen as a measure of similarity between the functions f and g. To see this, we first give
the definition of distance.
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3 INNER PRODUCT

Definition 3.5. Given two Boolean functions f, g : {−1, 1}n → {−1, 1}, we define the distance between f and
g to be

dist(f, g) = Px∼{−1,1}n [f(x) 6= g(x)] (3.0.6)

Since x is chosen uniformly, we have equivalently dist(f, g) = 2−n(Hamming distance between f and g). By
the definition of inner product 2.4, we have that

〈f, g〉 = 2−n
∑

x∈{−1,1}n
f(x)g(x) (3.0.7)

Because f(x)g(x) = 1 if f(x) = g(x) and f(x)g(x) = −1 otherwise, we have the following proposition.

Proposition 3.6. For any f, g : {−1, 1}n → {−1, 1}, we have

〈f, g〉 = 2−n
∑

x∈{−1,1}n
f(x)g(x) = Px∼{−1,1}n [f(x) = g(x)]− Px∼{−1,1}n [f(x) 6= g(x)] = 1− 2dist(f, g) (3.0.8)

The following corollary is thus a direct result of this proposition.

Corollary 3.7. For two sets S, T, S 6= T , we have

dist(χS , χT ) =
1

2
(3.0.9)

Proof. By lemma 2.8, we have 〈χS , χT 〉 = 0. Hence, 1− 2dist(f, g) = 0 by proposition 3.6.
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4 BLR TEST

4 BLR Test

4.1 Almost Linear Functions and BLR Test v

Lemma 4.1. For any f : {0, 1}n → {0, 1}, we have the following are equivalent

(i) f(x+ y) = f(x) + f(y)

(ii) f(x) =
∑
i∈A xi for some A ⊆ [n]

Proof. (i) ⇒ (ii): For any x ∈ {0, 1}n, we can write

x = x1e1 + x2e2 + ...+ xnen (4.1.1)

Thus by (i), we have
f(x) = f(x1e1) + f(x2e2) + ...+ f(xnen) (4.1.2)

Notice that by (i), the additive identity must exist. In other words, f(0) = 0. Hence, if xi = 0, we have
f(0) = 0 = xif(ei). If xi = 1, then f(xiei) = f(ei) = xif(ei). Therefore,

f(x) = x1f(e1) + x2f(e2) + ...+ xnf(en) =
∑
i∈A

xi where A = {i|f(ei) = 1} (4.1.3)

(ii) ⇒ (i):
f(x) + f(y) =

∑
i∈A

xi +
∑
i∈A

yi =
∑
i∈A

(xi + yi) = f(x+ y) (4.1.4)

Definition 4.2. A function f : {0, 1}n → {0, 1} is linear if one of the following holds:

(i) f(x+ y) = f(x) + f(y)

(ii) f(x) =
∑
i∈A xi for some A ⊆ [n]

Definition 4.3. For any Boolean functions f, g, we say that f and g are ε-close if dist(f, g) < ε.

One idea of property testing has the following scenario. Suppose we have a "black-box" which contains an
unknown function f : {0, 1}n → {0, 1} and we want to verify if this function is linear. Specifically, given an input
x ∈ {0, 1}n, we can query f(x) quickly but verifying all 2n possible values is too expensive. Hence, we aim to test
the linearity property approximately by the following scheme:

Algorithm 4.4 (BLR Test). Given query access to a function f : {0, 1}n → {0, 1}:

1. Sample x, y ∈ {0, 1}n uniformly and independently.

2. Query f(x), f(y) and f(x+ y).

3. Accept if f(x) + f(y) = f(x+ y).

Switching to f : {−1, 1}n → {0, 1}, we have the analogous algorithm

Algorithm 4.5 (BLR Test). Given query access to a function f : {−1, 1}n → {−1, 1}:

1. Sample x, y ∈ {−1, 1}n uniformly and independently.

2. Query f(x), f(y) and f(x ◦ y) where x ◦ y = (x1y1, x2, y2, ..., xnyn).

3. Accept if f(x)f(y)f(x ◦ y) = 1.

Note that linear functions are character functions in {−1, 1}.
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4.1 Almost Linear Functions and BLR Test 4 BLR TEST

Lemma 4.6.
P[BLR Test Accept] =

1

2
+

1

2

∑
S⊆[n]

f̂(S)3 (4.1.5)

Proof. Note that
1

2
+

1

2
f(x)f(y)f(x ◦ y) =

{
1 if BLR accepts
0 otherwise

(4.1.6)

Hence, we have

P[BLR Test Accept] = P[
1

2
+

1

2
f(x)f(y)f(x ◦ y)]

=
1

2
+

1

2
P[f(x)f(y)f(x ◦ y)]

=
1

2
+

1

2
E[f(x)f(y)f(x ◦ y)]

=
1

2
+

1

2
E[
∑
S∈[n]

f̂(S)χS(x)
∑
T∈[n]

f̂(T )χT (y)
∑
U∈[n]

f̂(U)χU (x ◦ y)]

=
1

2
+

1

2
E[
∑
S∈[n]

f̂(S)
∑
T∈[n]

f̂(T )
∑
U∈[n]

f̂(U)χS(x)χT (y)χU (x ◦ y)]

=
1

2
+

1

2

∑
S∈[n]

f̂(S)
∑
T∈[n]

f̂(T )
∑
U∈[n]

f̂(U)E[χS(x)χT (y)χU (x ◦ y)]

(4.1.7)

where

E[χS(x)χT (y)χU (x ◦ y)] = Ex,y∼{−1,1}n [
∏
i∈S

xi
∏
j∈T

yi
∏
k∈U

xkyk]

= Ex,y∼{−1,1}n [
∏

i∈S∆U

xi
∏

j∈T∆U

yi]

= Ex∼{−1,1}n [
∏

i∈S∆U

xi]Ey∼{−1,1}n [
∏

j∈T∆U

yi] x, y are independent

= E[χS∆U ]E[χT∆U ]

(4.1.8)

By Lemma 2.9, we obtain

P[BLR Test Accept] =
1

2
+

1

2

∑
S∈[n]

f̂(S)
∑
T∈[n]

f̂(T )
∑
U∈[n]

f̂(U)E[χS∆U ]E[χT∆U ]

=
1

2
+

1

2

∑
S∈[n]

f̂(S)f̂(S)f̂(S)

=
1

2
+

1

2

∑
S∈[n]

f̂(S)3

(4.1.9)

Theorem 4.7. If P[BLR Test Accept] > 1− ε, then f is ε-close to some linear function g : {0, 1}n → {0, 1}.

Proof. By Lemma 4.6, we have

P[BLR Test Accept] =
1

2
+

1

2

∑
S∈[n]

f̂(S)3 > 1− ε (4.1.10)
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4.1 Almost Linear Functions and BLR Test 4 BLR TEST

which gives us
1− 2ε <

∑
S∈[n]

f̂(S)3 ≤ max
T∈[n]

f(T )
∑
S∈[n]

f̂(S)2 = max
T∈[n]

f(T ) (4.1.11)

By Theorem 3.2, we have
1− 2ε < max

T∈[n]
f(T ) = max

T∈[n]
〈f, χT 〉 (4.1.12)

By Proposition 3.6, we obtain
1− 2ε < max

T∈[n]
(1− 2dist(f, χT )) (4.1.13)

Hence, we have that f is close to some linear function χT .

Theorem 4.8. For any f : {0, 1}n → {0, 1}, we have the following are equivalent

(i) f(x+ y) = f(x) + f(y) for most pairs of x, y ∈ {0, 1}n.

(ii) f(x) =
∑
i∈A xi for some A ⊆ [n] for most inputs x ∈ {0, 1}n.

proof sketch. (i)⇒ (ii): Since BLR Test accepts if f(x+y) = f(x) +f(y) for most pairs of x, y ∈ {0, 1}n, theorem
4.7 implies (ii).
(ii) ⇒ (i): f(x) + f(y) =

∑
i∈A xi +

∑
i∈y xi =

∑
i∈A(xi + yi) for most inputs x, y ∈ {0, 1}n.

Algorithm 4.9. How to use BLR Test

1. Repeat BLR Test for O(1/ε) times

2. If BLR Test fails for some input x, y, Reject.

3. If BLR Test did not fail, then f is ε-close to some linear function.

11



5 LOCAL DECODING AND LIST DECODING

5 Local Decoding and List Decoding

Error-correcting codes are used to ensure reliable transmission of information over noisy channels as well as to
ensure reliable storage of information on a medium that may be partially corrupted over time.
A code of length N is simply a subset C ∈ AN , where A is a finite set. Elements of C are called codewords.
A binary code is one with alphabet A = {0, 1}. An r-query locally decodable code C encodes k-bit messages m
in such a way that one can probabilistically recover any bit m(i) of the message by querying only r bits of the
(possibly corrupted) codeword C(m), where r can be as small as 2.

Definition 5.1. A q-ary code C : Fnq → FNq is said to be (r, δ, ε)-locally decodable if there exists a randomised
decoding algorithm A such that for all m ∈ Fnq and all w ∈ FNq such that dist(C(m), w) ≤ δ :

1. For every index i ∈ [n]
P[A(w, i) = mi] ≥ 1− ε, (5.0.1)

where the probability is taken over the random coin tosses of the algorithm A.

2. A makes at most r queries to w.

A similar definition considers recovering any codeword position as opposed to any message bit.

Definition 5.2. A q-ary code C : Fnq → FNq is said to be (r, δ, ε)-locally correctable if there exists a randomised
decoding algorithm A such that for all m ∈ Fnq and all w ∈ FNq such that dist(C(m), w) ≤ δ :

1. For every index j ∈ [N ]
P[A(w, j) = C(m)j ] ≥ 1− ε, (5.0.2)

where the probability is taken over the random coin tosses of the algorithm A.

2. A makes at most r queries to w.

5.1 Hadamard Code v

The classical Hadamard code encoding n-bit messages to 2n-bit codewords is a 2-query locally decodable code, and
also a 2-query locally correctable code.
Every codeword in the Hadamard code corresponds to one of 2n subsets S of [n]: the codewords of the Hadamard
code are the truth tables of χS , for S ⊆ [n]. The positions of the codewords are indexed by strings x ∈ {0, 1}n.
For message S ⊆ [n], the position of the codeword χS indexed by x is simply χS(x) (that is the parity of the bits
of x corresponding to the subset S.) Let w be a possibly corrupted encoding of S. (That is, instead of the truth
table of χS , w is the truth table of some other function, not too far from χS .) First we assume that the corrupted
words w are within relative distance δ <= 1/4 from SOME correct codeword.
First we see that the Hadamard code is locally correctable. Given x ∈ {0, 1}n, and w, the decoder picks random
y ∈ {0, 1}n, queries w(y) and w(x + y), and outputs the parity of these two bits. If w differs from the correct
encoding of S in at most δ fraction of coordinates, then, by union bound, with probability at least 1− 2δ both of
the decoder’s queries will go to uncorrupted locations. In such case, the decoder correctly recovers χS(x).
Next we consider local decoding, that is recovering individual message bits. Given an index i ∈ [n] and w, the
Hadamard decoder picks a string y ∈ {0, 1}n uniformly at random and outputs the parity of the two coordinates
of w corresponding to w(y) and w(y + ei). As before, if w differs from the correct encoding of S in at most δ
fraction of coordinates, then, by union bound, with probability at least 1 − 2δ both of the decoder’s queries will
go to uncorrupted locations. In such case, the decoder correctly recovers the value χS(ei), which tells us wheter
or not i ∈ S.
In fact, Hadamard code achieves optimal length for 2-query locally decodable codes.

Theorem 5.3. If there exists an (2, δ, ε)-locally decodable code C encoding n-bit messages to N -bit codewords;
then

N ≥ 2Ω((1/2−ε)4δ2n) (5.1.1)

12



5.2 Goldreich-Levin Algorithm 5 LOCAL DECODING AND LIST DECODING

The proof uses Quantum information argument and can be found in [Y+12].

For 3-query locally decodable codes, Yekhanin [Yek08] constructs a code with sub-exponential length of size
exp(exp(O(log n/(log log n)))).
Notice that if the distance between a corrupted codeword and some codeword is at most half of the minimum
distance, which is 1/4 for Hadamard code, then we have unique decoding.
On the other hand, for Hadamard codes, since we have for any f : {−1, 1}n → {−1, 1},∑

S⊆[n]

f̂(S)2 = 1 (5.1.2)

there are only a constant number of large coefficients of the Fourier expansion of f . This means that even if a
corrupted codeword (corresponding to some Boolean function f) is at distance greater than 1/4, there will only
be a constant number of possible codewords. To see this, let dist(f, χS) ≤ 1/2− ε, we have

f̂(S) = 〈f, χS〉 = 1− 2dist(f, χS) ≥ 2ε (5.1.3)

Because there are at most 1/(4ε2) coefficients of f whose magnitude is greater than 2ε, there are at most 1/(4ε2)
number of possible parity functions within distance 1/2− ε from f .

Remark 5.4. For every small δ > 0, the number of subsets S such that |f̂(S)| ≥ δ is at most 1/δ2.

Therefore, we can use list decoding to recover a list of possible codewords within the given distance to the
corrupted received word.

Definition 5.5. [GRS12] Given 0 ≤ ρ ≤ 1, l ≥ 1, a code C ∈ FNq is (ρ, l)-list decodable if for every received word
y ∈ FNq ,

|{x ∈ C|dist(y, x) ≤ ρ}| ≤ l (5.1.4)

Theorem 5.6 (Goldreich-Levin Theorem). There is a probabilistic algorithm such that given f : {0, 1}n → {0, 1}
and γ, δ > 0, it runs in time poly(n, 1/γ) log(1/δ) and with probability at least 1 − δ outputs a list of subsets
L = {S1, ..., Sk} such that

1. if |f̂(S)| ≥ γ, then S ∈ L.

2. if S ∈ L, then |f̂(S)| ≥ γ/2

This theorem says that the Hadamard code is efficiently list decodable.

5.2 Goldreich-Levin Algorithm v

The Goldreich-Levin Algorithm uses a divide and conquer scheme to estimate the Fourier weight of f on various
collections of sets.

Algorithm 5.7. Goldreich-Levin Algorithm

1. Given some integer k ≤ n and some subset S ⊆ [k], the bucket Bk,S is the collection of sets such that

Bk,S := {S ∪ T : T ⊆ [n] \ [k]}. (5.2.1)

We start with k = 0 and S = ∅.

2. Repeat the following until each bucket has only 1 set.

• Select any bucket with 2m sets where m = n− k.
• Split the bucket Bk,S into Bk+1,S and Bk+1,S∪{k+1}. In other words, we split the bucket Bk,S by fixing

the k + 1th bit.

13



5.2 Goldreich-Levin Algorithm 5 LOCAL DECODING AND LIST DECODING

0110*** ... *
↙ ↘

01100** ... * 01101** ... *

• Estimate the weight of each bucket by estimating∑
U∈B

f̂(U)2 (5.2.2)

• discard any bucket B if its weight estimate ≤ γ2/2

3. Output the list L of remaining buckets.

To see the correctness of the algorithm, we assume that we can efficiently estimate the weight of each bucket
and the estimates are accurate within γ2/4. Therefore,

1. If f̂(U) ≥ γ, we have f̂(U)2 ≥ γ2 ≥ γ2/2 + γ2/4 and U will never be discarded.

2. If f̂(U) < γ/2, we have f̂(U)2 < γ2/4 = γ2/2− γ2/4 and U will not remain in the end.

As for running time, by Remark 5.4, we see that there are at most 4/γ2 buckets in the end. Because each of the
surviving bucket will experience at most n splits, there are at most 4n/γ2 repetitions of the main loop.

Lemma 5.8 (Chernoff’s Bound). Let X :=
∑
i∈[n]Xi

n where Xi, i ∈ [n] are independent, identically distributed,
real valued random variables in [a, b]. Then,

P[|X − E[X]| ≥ ε] ≤ 2 exp(− 2nε2

b− a
) (5.2.3)

Lemma 5.9. Given f : {−1, 1}n → {−1, 1}, γ, δ > 0 and S ⊆ [n], we can estimate f̂(S) within error ±γ with
probability 1− δ using O( 1

γ2 log 1
δ ) queries.

Proof. Since f̂(S) = Ex∼{−1,1}n [f(x)χS(x)], by Chernoff’s Bound, we only need O( 1
γ2 log 1

δ ) queries to achieve
error ±γ with probability 1− δ.

Given a Boolean function f : {−1, 1}n → {−1, 1}, let x = y||z, where a||b is a concatenation of a and b. Using
Fourier expansion, we have

f(x) =
∑
U⊆[n]

f̂(U)xU =
∑

S⊆[k],T⊆[n]\[k]

f̂(S ∪ T )ySzT

=
∑
S∈[k]

yS
[ ∑
T⊆[n]\[k]

f̂(S ∪ T )zT
] (5.2.4)

For fixed z ∈ {−1, 1}n−k, denote by f∗z the subfunction from {−1, 1}k to {−1, 1}. Then looking at the Fourier
expansion of f(x) above, we see that

f̂∗z(S) :=
∑

T⊆[n]\[k]

f̂(S ∪ T )zT (5.2.5)

Claim 5.10. ∑
U∈Bk,S

f̂(U)2 =
∑

T⊆[n]\[k]

f̂(S ∪ T )2 = Ez∼{−1,1}n−k [f̂∗z(S)2] (5.2.6)

Proof. The first equality follows from the definition of the bucket.
To show the second equality, we let F (z) : {−1, 1}n−k → R be defined as F (z) := f̂∗z(S). The intuition is that we
suppose S is fixed and view z as a variable; hence, F (z) = f̂∗z(S) is then a function of z. Since

F (z) = f̂∗z(S) =
∑

T⊆[n]\[k]

f̂(S ∪ T )zT (5.2.7)
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we obtain
F̂ (z) = f̂(S ∪ T ) (5.2.8)

Hence,
Ez∼{−1,1}n−k [f̂∗z(S)2] = Ez∼{−1,1}n−k [F (z)2] =

∑
T⊆[n]\[k]

F̂ (z)2 =
∑

T⊆[n]\[k]

f̂(S ∪ T )2 (5.2.9)

The second equality is obtained by Parseval’s Theorem 3.3.

By theorem 3.2, we have

f̂∗z(S) = 〈f∗z, χS〉 = Ey∼{−1,1}k [f(y||z)χS(y)] (5.2.10)

which implies

Ez∼{−1,1}n−k [f̂∗z(S)2] = Ez∼{−1,1}n−k
[(

Ey∼{−1,1}k [f(y||z)χS(y)]
)2]

= Ez∼{−1,1}n−kEy∼{−1,1}kEy′∼{−1,1}k [f(y||z)χS(y)f(y′||z)χS(y′)]
(5.2.11)

where y and y′ are independent. Similar to Lemma 5.9, we only need to make O( 1
γ4 log 1

δ ) queries to estimate∑
U∈B f̂(U)2 with error γ2/4 and probability 1− δ. Consequently, we have proved the Goldreich-Levin Theorem

5.6.
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6 LEARNING THEORY

6 Learning Theory

To learn a character function χS exactly, we only need n queries, each being ei, given that each query outputs a
correct answer.
Suppose, on the other hand, we have query access to a function f : {−1, 1}n → {−1, 1} that is ε-close to
some character function χS . As discussed in section 5.1, for each i ∈ [n], if we pick a random y, we have
χS(ei) = f(y) · f(ei ◦ y) with probability at least 1 − 2ε = 1/2 + γ. Using Chernoff’s Bound 5.8, if we repeat
O( log(n/δ)

4γ2 ) times and take the majority of f(y) · f(ei ◦ y), then we have

P[majority incorrect] ≤ δ

n
(6.0.1)

which means we can get χS(ei) correctly for all ei with probability at least 1− n · δn = 1− δ.

6.1 "PAC" Learning v

Notation 6.1. We use C to denote a concept class, which is a collection of functions f .

Definition 6.2. In the model of "PAC" (Probably Approximately Correct) learning, a learning algorithm A
for C is a randomised algorithm which has limited access (for example, a polynomial number) to an unknown
target function f ∈ C and outputs some efficient representation of f . Typically, we have two access models:

• Random Examples: A can draw pairs (x, f(x)) where x ∈ is uniformly random.

• Membership Queries: A can request the value of f(x) where x is chosen by the algorithm A.

We say that A learns a concept class C with error ε if it learns an f ∈ C with error ε. That is, with high
probability, A outputs a hypothesis function h : {−1, 1}n → {−1, 1} which is ε-close to f .

Definition 6.3. Let F be a family of subsets S ⊆ [n]. We say that the Fourier spectrum of f : {−1, 1}n → R is
ε-concentrated on F if ∑

S 6∈F

f̂(S)2 ≤ ε (6.1.1)

The following lemma is a direct result from the definition.

Lemma 6.4. Let f : {−1, 1}n → R be ε-concentrated on F . For g :=
∑
S∈F f̂(S)χS, we have

||f − g||22 ≤ ε (6.1.2)

Lemma 6.5. Suppose that f : {−1, 1}n → {−1, 1}, g : {−1, 1}n → R satisfy that ||f − g||22 ≤ ε. Define a Boolean
function h : {−1, 1}n → {−1, 1} by h := sign(g(x)), then

dist(f, h) ≤ ε (6.1.3)

Proof. For x ∈ {−1, 1}n such that f(x) 6= h(x), we have (f(x)− g(x))2 ≥ 1. Hence,

||f − g||22 = Ex∼{−1,1}n [(f(x)− g(x))2] ≥ Px∼{−1,1}n [f(x) 6= h(x)] = dist(f, h) (6.1.4)

Theorem 6.6. Suppose an algorithm A has random example access to the target function f : {−1, 1}n → {−1, 1}
and can identify a family F on which f is ε/2-concentrated. Then in poly(|F|, n, 1/ε) time, A can with high
probability output a hypothesis function h which is ε-close to f .

Proof. The main scheme consists of two steps:
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1. Since f̂(S) = Ex∼{−1,1}n [f(x)χS(x)], we can use the mean of samples of f(x)χS(x) to estimate f̂(S). By
Chernoff’s Bound 5.8, for each S ∈ F , we can estimate f̂(S) within error ±

√
ε

2
√
|F|

with probability 1− δ for

some small ε, δ > 0. Let f̃(S) be the estimates of f̂(S).
The number of samples needed is O( |F|ε log(1/δ)). Take δ = 1/(10|F|), we can estimate f̂(S) for all S within
poly(|F|, n, 1/ε) time.

2. Let g =
∑
S∈F f̃(S)χS . Output h = sign(g).

It remains to show that ||f − g||22 ≤ ε. That is

||f − g||22 = 〈f − g, f − g〉 =
∑
S⊆[n]

f̂ − g(S)2

=
∑
S∈F

(f̂(S)− f̃(S))2 +
∑
S 6∈F

f̂(S)2

≤
∑
S∈F

( √
ε

2
√
|F|

)2

+
ε

2

≤ ε

4
+
ε

2
< ε

(6.1.5)

Hence, using lemma 6.5, we conclude the proof.

Theorem 6.7 ( [KM93]). Let C be a concept class such that f ∈ C , f : {−1, 1}n → {−1, 1} has its Fourier
spectrum ε/4-concentrated on at most M sets. Then C can be learned with error ε with time poly(M,n, 1/ε).

Proof. Firstly, by theorem 5.6, with high probability, we can find a list L such that if |f̂(S)| ≥ ε
4M , then S ∈ L.

Secondly, by theorem 6.6, it suffice to show that f is ε/2-concentrated on L. LetM be the family of at most M
sets such that f is ε/4-concentrated onM. Thus,∑

S 6∈L

f̂(S)2 =
∑

S 6∈L,S∈M

f̂(S)2 +
∑

S 6∈L,S 6∈M

f̂(S)2

≤M · ε

4M
+
ε

4
=
ε

2

(6.1.6)

Theorem 6.8 ( [LMN89]). Let C be a concept class such that f ∈ C , f : {−1, 1}n → {−1, 1} has its Fourier
spectrum ε/4-concentrated on

M = {S ⊆ [n] : |S| ≤ d} (6.1.7)

Then C can be learned with error ε with time poly(|M|, n, 1/ε) by using the random example access model.

Proof. By theorem 6.6 with F =M. Notice that

|M| ≤
k∑
i=0

(
n

i

)
≤ O(nk) (6.1.8)
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7 Decision Trees

Definition 7.1. A decision tree is a rooted binary tree in which each internal node is labelled by a variable xi,
each outgoing edge is labeled by +1 or −1, and each leaf is labelled by +1 or −1.

Definition 7.2. We say that a given decision tree T computes a Boolean function f : {−1, 1}n → {−1, 1} if for
every input x ∈ {−1, 1}n, the label of the reached leaf on input x equals f(x). The size of T is the number of
leaves of T . The depth of T is the length of the longest path in T .

We use 1p : {−1, 1}n → {0, 1} to denote the indicator function of a path p from the root to a leaf in a
decision tree T .

1p(x) =

{
1 if on input x, we reach the leaf of the path p
0 otherwise

(7.0.1)

We insist that each variable xi is queried by the path p at most once. Equivalently, let V be the set of variables
queried along the path p, we have

1p(x) =
∏
i∈V1

(
1 + xi

2
)
∏
j∈V2

(
1− xj

2
) (7.0.2)

where V1 is the set of variables along the path p whose immediate outgoing edge is labelled 1 and V2 is the set of
those labelled −1.

Let label(p) to denote the label of the leaf of p. Then for a decision tree T that computes f : {−1, 1}n → {−1, 1},

f(x) =
∑

path p∈T

1p(x)label(p) (7.0.3)

Definition 7.3. The decision tree complexity of f , denoted by D(f), is the depth of the decision tree T such
that T computes f with the least possible depth. Note that D(f) ≤ n for all f .

The following result is a direct observation from equation 7.0.2.

Lemma 7.4. If a path p has length d, then the indicator function has a Fourier representation as

1p(x) =
∑
S⊆V

± 1

2d
χS(x) (7.0.4)

where V is the set of variables queried along the path p.

Theorem 7.5. If f is computed by a decision tree of depth d, then

1. The degree of f is at most d.

2. Each coefficient is an integer multiple of 1/2d.

3. The number of non-zero Fourier coefficients is at most 4d.

Proof. 1 follows from equation 7.0.2.
2 is a direct result of Lemma 7.4.
3 Since each Fourier coefficient is at least 1/2d, by Parseval’s Theorem 3.3, we have there are at most (2d)2 non-zero
Fourier coefficients. We can also see this by noticing that each indicator function has at most 2d nonzero Fourier
coefficients, and there are at most 2d leaves.

Corollary 7.6. A decision tree of depth d can be learned exactly with membership queries in poly(4d)poly(n) time.

Proof. By setting ε = 1/2d+1, we can apply Kushilevitz-Mansour algorithm (theorem 6.7). Then, since the output
function is ε-close to the decision tree, there is a unique decoding. In other words, we can round each Fourier
coefficient estimate of the output function to the nearest multiple of 1/2d.

Lemma 7.7. Size s decision trees are ε-close to a depth log(s/ε) decision tree.
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Proof. Let T be a size s decision tree computing f : {−1, 1}n → {−1, 1}, we can obtain a new tree T ′ by cutting
off all paths of length greater than log(s/ε). Observe that T (x) 6= T ′(x) if and only if input x follows one of the
longer paths.
For any given path p of length k, since each internal node has two out-coming edges, the fraction of inputs that
follow path p is at most 2−k. For any k ≥ log(s/ε), we have such probability is thus at most ε/s.
Since T is of size s, we have

P[T (x) 6= T ′(x)] ≤ s · ε/s = ε (7.0.5)

Corollary 7.8. A function f : {−1, 1}n → {−1, 1} computable by size s decision trees are O(ε)-concentrated on
a family of size at most 4log(s/ε) = (s/ε)2.

The following corollary is a result of the combination of corollary 7.8 and the Linial-Mansour-Nisan algorithm
(theorem 6.8).

Corollary 7.9. A polynomial sized decision tree can be learned exactly with membership queries in polynomial
time.
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8 Fourier Norms

Definition 8.1. The Fourier (or spectral) p-norm of a function f : {−1, 1}n → R is

|̂|f |̂|p :=
( ∑
S⊆[n]

|f̂(S)|p
)1/p (8.0.1)

The L1 Fourier norm is just the sum of the absolute value of the Fourier coefficients:

|̂|f |̂|1 :=
∑
S⊆[n]

|f̂(S)| (8.0.2)

It is easy to check the following properties.

Lemma 8.2. For L1 Fourier norm,

• |̂|f + g|̂|1 ≤ |̂|f |̂|1 + |̂|g|̂|1

• |̂|c · f |̂|1 ≤ |c| · |̂|f |̂|1 for some constant c.

Example 8.3. |̂|ANDn |̂|1 = 1.

By Parseval’s Theorem 3.3, we have the L2 Fourier norm is the same as the L2 norm

|̂|f |̂|2 :=
( ∑
S⊆[n]

|f̂(S)|2
)1/2

= 〈f, f〉1/2 = ||f ||2 (8.0.3)

Lemma 8.4. For some ε > 0, the function f : {−1, 1}n → {−1, 1} is ε-concentrated on the set

F = {S ⊆ [n]||f̂(S) ≥ ε

|̂|f |̂|1
} (8.0.4)

Proof. ∑
S 6∈F

f̂(S)2 ≤ max
S 6∈F
|f̂(S)| ·

∑
S 6∈F

|f̂(S)|

≤ max
S 6∈F
|f̂(S)| ·

∑
S⊆[n]

|f̂(S)|

≤ ε

|̂|f |̂|1
· |̂|f |̂|1 = ε

(8.0.5)

Remark 8.5. By Parseval’s Theorem 3.3, we have that |F| ≤ (|̂|f |̂|1/ε)2.
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9 DNF Formulas

Definition 9.1. A DNF(disjunctive normal form) formula over Boolean input x = (x1, ..., xn) is defined as
a logical OR of terms, each of which is a logical AND of literals. A literals is either xi or x̄i. Additionally, no
term contains both a variables and its negation. The number of literals of a term is called its width.

The Mansour’s conjecture states that a polynomial sized DNF may have its Fourier spectrum concentrated on
a small collection.

Conjecture 9.2 (Mansour’s conjecture). For f : {−1, 1}n → {−1, 1} and ε ∈ (0, 1/2],

• If f is computed by a DNF formula of size s > 1, then the Fourier spectrum of f is ε-concentrated on some
family F of subsets S ⊆ [n] such that |F| ≤ sO(log(1/ε)).

• If f is computed by a polynomial sized DNF formula, then the Fourier spectrum of f is ε-concentrated on
some polynomial sized family F of subsets S ⊆ [n].

In this section, we aim to show the following theorem, a weaker result of a DNF with some width w > 2.

Theorem 9.3 (Main Theorem). Let f : {−1, 1}n → {−1, 1} be computed by a DNF of width w > 2. Then For
ε ∈ (0, 1/2], the Fourier spectrum of f is ε-concentrated on some family F of subsets S ⊆ [n] with

|F| ≤ wO(w log(1/ε)). (9.0.1)

If the size of the DNF, s = poly(n), we have |F| ≤ nO(log logn).

To prove the above theorem, we need two main tools in the following, whose proofs we will show later.

Theorem 9.4. For f : {−1, 1}n → {−1, 1} computed by a DNF of width w and some ε ∈ (0, 1/2], f is ε-
concentrated on degree up to O(w log(1/ε)).

Theorem 9.5. If f : {−1, 1}n → {−1, 1} is computed by a DNF of width w, then for all k, we have∑
|U |≤k

|f̂(U)| ≤ 2 · (20w)k. (9.0.2)

9.1 Hastad’s Switching Lemma v

Definition 9.6 (Random Subset). For δ ∈ [0, 1], we say that J is a δ-random subset of [n] if for each element
i ∈ [n], i ∈ J with probability δ.

Definition 9.7 (Random Restriction). We define a δ-random restriction on {−1, 1}n as a pair (J |z) by first
choosing the δ-random subset J and then choosing z ∈ {−1, 1}J uniformly at random. That is, each coordinate
i is free if i ∈ J and is fixed if i 6∈ J .

Equivalently, each coordinate i is free with probability δ and is fixed to either −1 or +1 with probability
(1 − δ)/2, respectively. Recall the definition of decision tree complexity 7.3, D(f), the minimum depth of any
boolean decision tree computing f . We state Hastad’s Switching Lemma without proof.

Lemma 9.8 (Hastad’s Switching Lemma). Let f : {−1, 1}n → {−1, 1} be computed by a DNF (or CNF) of width
at most w and (J |z) be a δ-random restriction on {−1, 1}n. Then, for any nonnegative integer k, we have

P[D(fJ |z) ≥ k] ≤ (5δw)k (9.1.1)

In the case that k = 1, we have that P[D(fJ |z) is not a constant ] ≤ 5δw.

Lemma 9.9. Let (J |z) be a δ-random restriction on {−1, 1}n. For f : {−1, 1}n → {−1, 1} and some nonnegative
integer k, let γ = P[D(fJ |z) ≥ k]. We have that f is 3γ-concentrated on degree up to 3k/δ.
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Proof. Recall that deg(f) ≤ D(f). Hence, we have

P[
∑
|S|>k

f̂J |z(S)2 6= 0] ≤ γ (9.1.2)

By Parseval’s Theorem 3.3, we have
∑
|S|>k f̂J |z(S)2 ≤ 1, which implies

EJ |z[
∑
|S|>k

f̂J |z(S)2] ≤ P[
∑
|S|>k

f̂J |z(S)2 6= 0] ≤ γ (9.1.3)

For fixed S, we can write FS(z) = f̂∗z(s) as a function of z where ∗ denotes the free bits. As we have seen in the
proof of claim 5.10, F̂S(z) = f̂(S ∪ T ) and

Ez[f̂J |z(S)2] =
∑
T⊆J

f̂(S ∪ T )2 (9.1.4)

Hence, for fixed J , we have that for all S ⊆ J ,

Ez∈{−1,1}J [f̂J |z(S)2] =
∑
T⊆J

f̂(S ∪ T )2 =
∑
U⊆[n]

f̂(U)21U∩J=S (9.1.5)

Notice that fJ |z only depends on the bits in J , which implies that for all S ⊆ [n],Ez[f̂J |z(S)2] =
∑
U⊆[n] f̂(U)21U∩J=S

and thus
EJ |z[f̂J |z(S)2] =

∑
U⊆[n]

f̂(U)2P[U ∩ J = S] (9.1.6)

Using linearity of expectation,

EJ |z[
∑
|S|>k

f̂J |z(S)2] =
∑
|S|>k

EJ |z[f̂J |z(S)2] =
∑
|S|>k

∑
U⊆[n]

f̂(U)2P[U ∩ J = S] =
∑
U⊆[n]

f̂(U)2P[|U ∩ J | > k] (9.1.7)

Using Chernoff’s Bound, we have that P[|U ∩ J | > k] > 1/3 when |U | ≥ 3k/δ. Hence,

EJ |z[
∑
|S|>k

f̂J |z(S)2] =
∑
U⊆[n]

f̂(U)2P[|U ∩ J | > k] ≥
∑

|U |≥3k/δ

1

3
f̂(U)2 (9.1.8)

That is,
∑
|U |≥3k/δ f̂(U)2 ≤ 3δ.

proof of Theorem 9.4. Let δ = 1/10w, k = C log(1/ε) for some constant C. By Hastad’s Switching Lemma 9.8, we
have

γ = P[D(fJ |z) ≥ k] ≤ (5δw)k ≤ (
1

2
)k = εC (9.1.9)

For large enough C, we have 3γ < ε. Hence, by lemma 9.9, we have f is ε-concentrated on degree up to
3k/δ = 10w3C log(1/ε) = O(w log(1/ε)).

We state the following lemma without proof.

Lemma 9.10. Let f : {−1, 1}n → {−1, 1} and (J |z) be a δ-random restriction on {−1, 1}n. Then∑
U⊆[n]

δ|U | · |f̂(U)| ≤ EJ |z[2D(fJ|z)] (9.1.10)

proof of Theorem 9.5. Let δ = 1/20w. By Hastad’s Switching Lemma 9.8, we have

EJ |z[2D(fJ|z)] ≤
∞∑
d=0

(
5

20
)d · 2d = 2 (9.1.11)

Hence, from lemma 9.10, we get

2 ≥ EJ |z[2D(fJ|z)] ≥
∑
U⊆[n]

(
1

20w
)|U | · |f̂(U)| ≥ (

1

20w
)k
∑
U⊆[n]

·|f̂(U)| (9.1.12)
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9.2 Proof of the Main Theorem v

Proposition 9.11. Suppose f : {−1, 1}n → R is ε-concentrated on F and g : {−1, 1}n → R satisfies ||f−g||22 ≤ δ.
Then, g is 2(ε+ δ)-concentrated on F .

Proof. Observe that ∑
S 6∈F

ĝ(S)2 =
∑
S 6∈F

[ĝ(S)− f̂(S) + f̂(S)]2 (9.2.1)

Using Cauchy-Schwarz inequality, we have

[ĝ(S)− f̂(S) + f̂(S)]2 ≤ 2[ĝ(S)− f̂(S)]2 + f̂(S)2 (9.2.2)

Thus, ∑
S 6∈F

ĝ(S)2 ≤ 2
(∑
S 6∈F

f̂(S)2 +
∑
S 6∈F

[ĝ(S)− f̂(S)]2
)
≤ 2
(∑
S 6∈F

f̂(S)2 +
∑
S⊆[n]

[ĝ(S)− f̂(S)]2
)

= 2
(∑
S 6∈F

f̂(S)2 + ||f − g||2
)
≤ 2(ε+ δ)

(9.2.3)

Proposition 9.12. For f : {−1, 1}n → {−1, 1}, g : {−1, 1}n → {−1, 1} and some ε ∈ (0, 1/2], f and g are ε-close
if and only if ||f − g||22 ≤ 4ε.

Proof. ||f − g||2 = 〈f − g, f − g〉 = Ex∈{−1,1}n [f(x)− g(x)]2 = 4Px∈{−1,1}n [f(x) 6= g(x)] ≤ 4ε.

Lemma 9.13. For f : {−1, 1}n → {−1, 1} computed by a DNF of size s and some ε ∈ (0, 1/2], we have f is
ε-close to a width log(s/ε) DNF.

Proof. Let g be the DNF obtained from f by deleting the terms with more than log(s/ε) literals. Notice that
for any fixed term with k literals, the fraction of inputs that satisfies this term is at most 2−k. That is, for
k > log(s/ε), the fraction of inputs that satisfies this term is less than ε/s. Therefore,

Px∈{−1,1}[f(x) 6= g(x)] ≤ s · ε
s

= ε. (9.2.4)

proof of theorem 9.3. Let k = C · w · log(2/ε) for some constant C and g =
∑
|S|≤k f̂(S)χS . By theorem 9.4, f is

ε-concentrated on degree up to O(w log(1/ε)). Hence,
∑
|S|>k f̂(S)2 = 〈f − g〉 ≤ ε/2 for large enough C.

By theorem 9.5, we have |̂|g|̂|1 ≤ wO(w log(1/ε)). By lemma 9.13, we have that g is ε/2-concentrated on F with

|F| ≤
(2|̂|g|̂|1

ε

)
≤ wO(w log(1/ε)) (9.2.5)

It remains to show that f is ε-concentrated on the same F . Notice that∑
S 6∈F

f̂(S)2 =
∑

S 6∈F,|S|>k

f̂(S)2 +
∑

S 6∈F,|S|≤k

f̂(S)2 =
∑

S 6∈F,|S|>k

f̂(S)2 +
∑

S 6∈F,|S|≤k

ĝ(S)2 ≤ ε/2 + ε/2 = ε (9.2.6)

Corollary 9.14. For f : {−1, 1}n → {−1, 1} computed by a DNF of size s and some ε ∈ (0, 1/2], we have f is
O(ε)-concentrated on

F = {T ⊆ [n]||T | ≤ log(
s

ε
)} (9.2.7)
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Proof. By lemma 9.13, we have that f is ε-close to some width log(s/ε) DNF g. By proposition 9.12, we have
||f − g||22 ≤ 4ε. Now, using theorem 9.4, we have that g is δ-concentrated on degree up to O(log(s/ε) log(1/δ)).
By proposition 9.11, we have that f is 2(δ + 4ε)-concentrated on F .

We can improve this corollary if we replace theorem 9.4 by theorem 9.3 in the proof we have shown, which
gives us the following.

Corollary 9.15. For f : {−1, 1}n → {−1, 1} computed by a DNF of size s and some ε ∈ (0, 1/2], we have f is
O(ε)-concentrated on F with

|F| ≤ (log(s/ε))O(log(s/ε) log(1/ε)). (9.2.8)

Remark 9.16. For constant ε, we have

|F| ≤ (log(s))O(log(s)) = sO(log log(s)). (9.2.9)

If we further have that s = poly(n), then
|F| ≤ nO(log log(n)). (9.2.10)
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10 INFLUENCE AND SENSITIVITY

10 Influence and Sensitivity

For the first half of this section, we restrict our attention to Boolean functions f : {−1, 1}n → {−1, 1}. For the
second half, we will move on to more general definitions for real valued functions f : {−1, 1}n → R.

Notation 10.1. We use xi to denote the string x whose ith bit is flipped.

Definition 10.2. For a Boolean function f : {−1, 1}n → {−1, 1}, we say that f is sensitive to the ith bit on
input x if f(x) 6= f(xi).

Definition 10.3. The sensitivity of a Boolean function f : {−1, 1}n → {−1, 1} on input x ∈ {−1, 1}n is defined
as

s(f, x) := # of coordinates i such that f(x) 6= f(xi) (10.0.1)

The sensitivity of a Boolean function f : {−1, 1}n → {−1, 1} is defined as

s(f) := max
x∼{−1,1}n

s(f, x) (10.0.2)

The average sensitivity of a Boolean function f : {−1, 1}n → {−1, 1} is defined as

Avg Sensitivity(f) := Ex∼{−1,1}n [s(f, x)] = 2−n
∑

x∼{−1,1}n
s(f, x) (10.0.3)

Example 10.4. s(ORn, 0...0) = n, s(ORn, x) = 1 where |x| = 1, s(ORn, x) = 0 where |x| > 1.

Example 10.5. s(XORn, x) = n.

Definition 10.6. The influence of the i-th bit on f : {−1, 1}n → {−1, 1} is defined as

Inf i[f ] = Px∼{−1,1}n [f(x) 6= f(xi)] =
|{x : f(x) 6= f(xi)}|

2n
(10.0.4)

The total influence of f : {−1, 1}n → {−1, 1} is defined as

I[f ] =

n∑
i=1

Inf i[f ] (10.0.5)

Example 10.7. For ORn, we have for any i,

Inf i[ORn] = 2−n+1 (10.0.6)

Similarly, for ANDn, we have for any i,
Inf i[ANDn] = 2−n+1 (10.0.7)

Thus,
I[ORn] = I[ANDn] = n2−n+1 (10.0.8)

Example 10.8. As for the parity function XORn = χ[n], we have for any i,

Inf i[χ[n]] = 1 (10.0.9)

and thus,
I[χ[n]] = n (10.0.10)

Example 10.9. We can use a Boolean cube to help visualise the influence of Maj3, as shown in Figure 10.1. We
let each Boolean string represent the input and draw an edge between two strings if one string x can be obtained
by flipping one bit from the other string y. Hence, if f(x) 6= f(y), we mark this edge.
Hence, we obtain that for all i, Inf i[Maj3] = 1/2 and I[Maj3] = 3/2.

Remark 10.10. From the viewpoint of Boolean cubes, we have that Inf i[f ] equals the fraction of marked edges in
the ith dimension, or equivalently

Inf i[f ] =
# of pairs connected by marked edges

2n−1
(10.0.11)
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011 111

010 110

001 101

000 100

Figure 10.1: Boolean Cube for Maj3

10.1 Influence and Derivatives v

We now adapt a more general definition of influence.

Definition 10.11. The influence of the i-th bit on f : {−1, 1}n → R is defined as

Inf i[f ] =
∑

S s.t. i∈S
f̂(S)2 (10.1.1)

The total influence of f : {−1, 1}n → {−1, 1} is defined as

I[f ] =

n∑
i=1

Inf i[f ] (10.1.2)

Definition 10.12. For f : {−1, 1}n → R, we define the derivative in the i-th direction as

Di,f (x) =
f(xi→1)− f(xi→−1)

2
(10.1.3)

For Boolean valued f : {−1, 1}n → {−1, 1}, we have

Di,f (x) =

{
±1 if f(x) 6= f(xi)

0 if f(x) = f(xi)
(10.1.4)

Note that Di,f (x) has only n− 1 variables.

Lemma 10.13. For a set T ⊆ [n] \ {i} for some coordinate i, we have

D̂i,f (T ) = f̂(T ∪ {i}) (10.1.5)

Proof. Suppose the coordinate i is given. Let S ⊆ [n] be a set that contains i. Then,

f̂(S) =
1

2n

∑
x∈{−1,1}n

f(x)χS(x)

=
1

2n

∑
x∈{−1,1}n,xi=1

f(x)χS(x) + f(xi)χS(xi)

=
1

2n

∑
x∈{−1,1}n,xi=1,f(x)6=f(x′)

χS\{i}(f(x)− f(xi)

=
1

2n−1

∑
y∈{−1,1}n−1

χS\{i}Di,f (y)

= D̂i,f (S \ {i})

(10.1.6)
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Notation 10.14. We use the indicator function

1f(x)6=f(xi)(x) =

{
1 if f(x) 6= f(xi)

0 if f(x) = f(xi)
(10.1.7)

Notice that Di,f (x)2 = 1f(x)6=f(xi)(x).

Proposition 10.15. For f : {−1, 1}n → {−1, 1}, the two definitions of influence on the i-th bit is equivalent. In
other words,

Inf i[f ] = Px∼{−1,1}n [f(x) 6= f(xi)] =
∑

S⊆[n] s.t. i∈S

f̂(S)2 (10.1.8)

Proof.

Inf i[f ] = Px∼{−1,1}n [f(x) 6= f(xi)]

= Ex∼{−1,1}n [1f(x)6=f(xi)(x)]

= Ex∼{−1,1}n [Di,f (x)2]

=
1

2n−1

∑
x∼{−1,1}n,xi=1

Di,f (x)2 +Di,f (xi)2

2

(10.1.9)

Notice that Di,f (x)2 = Di,f (xi)2, which gives us

Inf i[f ] =
1

2n−1

∑
x∼{−1,1}n,xi=1

Di,f (x)2 +Di,f (xi)2

2

= Ey∼{−1,1}n−1 [Di,f (y)2]

= 〈Di,f , Di,f 〉

=
∑

T⊆[n]\{i}

D̂i,f (T )2

(10.1.10)

that does not depend on the i-th bit. Hence, by lemma 10.13, we obtain

Inf i[f ] =
∑

T⊆[n]\{i}

D̂i,f (T )2 =
∑

S⊆[n] s.t. i∈S

f̂(S)2 (10.1.11)

Proposition 10.16. For any Boolean function f : {−1, 1}n → {−1, 1}, we have

I[f ] = Avg Sensitivity(f) (10.1.12)

Proof.

I[f ] =

n∑
i=1

Px∼{−1,1}n [f(x) 6= f(xi)]

=

n∑
i=1

Ex∼{−1,1}n [1f(x) 6=f(xi)(x)]

= Ex∼{−1,1}n [

n∑
i=1

1f(x)6=f(xi)(x)]

= Ex∼{−1,1}n [s(f, x)] = Avg Sensitivity(f)

(10.1.13)
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Theorem 10.17. For f : {−1, 1}n → R, I[f ] =
∑
S∈[n] |S| · f̂(S)2.

Proof.

I[f ] =

n∑
i=1

Inf i[f ] =

n∑
i=1

∑
S s.t. i∈S

f̂(S)2 =
∑
S∈[n]

|S| · f̂(S)2 (10.1.14)

Corollary 10.18. f : {−1, 1}n → {−1, 1}, I[f ] ≤ deg(f).

Proof.
I[f ]

∑
S∈[n]

|S| · f̂(S)2 ≤ max
S⊆[n] s.t. f̂(S)6=0

|S|
∑
S∈[n]

·f̂(S)2 ≤ deg(f) (10.1.15)

Corollary 10.19. For f : {−1, 1}n → R, f is ε-concentrated up to degree I[f ]/ε.

Proof. Note that

I[f ] ≥
∑

S⊆[n] s.t. |S|>I[f ]/ε

|S| · f̂(S)2 ≥ I[f ]

ε

∑
S∈[n] s.t. |S|>I[f ]/ε

f̂(S)2 (10.1.16)

which gives us ∑
S∈[n] s.t. |S|>I[f ]/ε

f̂(S)2 ≤ ε (10.1.17)

10.2 Mean and Variance v

For f : {−1, 1}n → R, think of f(x) as a real valued random variable. The mean of f is given by

E[f ] = Ex∈{−1,1}n [f(x)] (10.2.1)

The variance of f is given by

V ar[f ] = 〈f − E[f ], f − E[f ]〉 = E[f2]− E[f ]2 (10.2.2)

Lemma 10.20. For f : {−1, 1}n → R, we have E[f ] = f̂(∅), V ar[f ] =
∑
S⊆[n],S 6=∅ f̂(S)2.

Proof.
E[f ] = 〈f, 1〉 = 〈f, χ∅〉 = f̂(∅) (10.2.3)

V ar[f ] = E[f2]− E[f ]2 =
∑
S⊆[n]

f̂(S)2 − f̂(∅)2 =
∑

S⊆[n],S 6=∅

f̂(S)2 (10.2.4)

Lemma 10.21. For f : {−1, 1}n → {−1, 1}, let p = Px∈{−1,1}n [f(x) = −1]. We have E[f ] = 1 − 2p, V ar[f ] =
4p(1− p).

Proof.

E[f ] = 1 · Px∈{−1,1}n [f(x) = 1] + (−1) · Px∈{−1,1}n [f(x) = −1] = (1− p)− p = 1− 2p (10.2.5)

V ar[f ] = E[f2]− E[f ]2 = 1− (1− 2p)2 = 4p(1− p) (10.2.6)

Theorem 10.22 (Poincare Inequality). For f : {−1, 1}n → R, we have V ar[f ] ≤ I[f ].
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Proof. Because |S| ≥ 1 if S 6= ∅, we have

V ar[f ] =
∑

S⊆[n],S 6=∅

f̂(S)2 ≤
∑
S⊆[n]

|S|f(S)2 = I[f ] (10.2.7)

Corollary 10.23. For f : {−1, 1}n → R, we have

1

n
V ar[f ] ≤ max

i
Inf i[f ] ≤ V ar[f ] (10.2.8)

Proof. The first inequality comes from the Poincare Inequality (see above) as follows:

1

n
V ar[f ] ≤ 1

n
I[f ] ≤ 1

n

∑
i

Inf i[f ] ≤ max
i

Inf i[f ] (10.2.9)

To see the second inequality, we observe that for all i, by proposition 10.15 and lemma 10.20,

Inf i[f ] =
∑

S⊆[n] s.t. i∈S

f̂(S)2 ≤
∑

S⊆[n],S 6=∅

f̂(S)2 = V ar[f ] (10.2.10)

10.3 Monotone Functions v

Definition 10.24. We say that a function f : {0, 1}n → {0, 1} is monotone if for x, y ∈ {0, 1}n such that x ≤ y,
(i.e., for all i, xi ≤ yi), then f(x) ≤ f(y).

Notice that for monotone f : {−1, 1}n → {−1, 1}, we have Di,f (x) = 1f(x)6=f(xi)(x).

Example 10.25. ANDn, ORn, Majn are monotone. XORn is not monotone.

Proposition 10.26. For monotone f : {−1, 1}n → {−1, 1},

Inf i[f ] = f̂({i}) (10.3.1)

Proof. By lemma 10.20 and lemma 10.13, we have

Inf i[f ] = E[1f(x) 6=f(xi)(x)] = E[Di,f (x)] = D̂i,f (∅) = f̂({i}) (10.3.2)
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11 Voting Rules and Coalitions

A Boolean function f : {0, 1}n → {0, 1} can be thought of as a voting rule or social choice function for an
election with 2 candidates and n voters. The output of f can be thought of as the winner. The goal of a good
voting rule is a balanced function where each bit has not too large influence. We say that a function is balanced
if Px∼{0,1}n [f(x) = 1] = 1/2.

Example 11.1. As we have seen in example 10.7, AND and OR has equally small individual influence and these
functions are far from being balanced.

Example 11.2. The dictator function, i.e., f(x) = xi for some coordinate i is balanced; however, for a dictator
function f(x) = xi

Inf i(xi) = 1 Inf j(xi) = 0∀i 6= j (11.0.1)

This means that only the ith bit is influential.

Example 11.3. We say a function f : {0, 1}n → {0, 1} is a tribes function of width w and size s where n = ws if

ORs(ANDw(x(1)), ..., AND(x(s))) (11.0.2)

where x(i) ∈ {0, 1}w. Notice that

Px[Tribesw,s(x) = 0] = (1− 1

2w
)s (11.0.3)

If we set s := d2w ln 2e, then we have that Px∈{0,1}n [Tribesw,s(x) = 0] ≈ 1/2. Hence, Tribes function is close
to balanced. Moreover, the individual influence of each bit is also not too large. Specifically, consider a bit k in
the ith tribe. Notice that with probability 1/2w−1 all other bits in the ith tribe votes TRUE and with probability
(1− 1/2w−1)s−1 all other tribes votes FALSE. Then

Infk[Tribesw,s] = Px(Tribesw,s(x) 6= Tribesw,s(x
k))

=
1

2w−1
· (1− 1

2w−1
)s−1

=
1

2w−1
· (1− 1

2w−1
)−1 · Px[Tribesw,s(x) = 0]

=
2

2w − 1
· Px[Tribesw,s(x) = 0]

≈ 2

2w − 1
· 1

2
≈ 1

2w − 1

(11.0.4)

Notice that we set s := d2w ln 2e and ws = n, then

Infk[Tribesw,s] ≈
1

2w − 1
≈ w ln 2

n
≈ lnn

n
(11.0.5)

Thus, each individual bit also has not too large influence.

11.1 Symmetric Functions and Transitive Functions v

Definition 11.4. We say that a function f : {−1, 1}n → {−1, 1} is symmetric if f(xπ) = f(x) for all permutation
π. In other words, f(x) only depends on the number of 1s in x and is independent of the way the bits are permuted.

Example 11.5. AND, OR, PARITY, MAJORITY are all symmetric.

Transitive function are a generalisation of symmetric functions.

Definition 11.6. We say that a function f : {−1, 1}n → {−1, 1} is transitive if for all i, j ∈ [n] there exists a
permutation π taking i to j such that f(xπ) = f(x).
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Figure 11.1: Tribes Function

Intuitively, a function f is transitive if for any two i, j ∈ [n] are "equivalent".

Theorem 11.7. For a transitive function f : {−1, 1}n → {−1, 1},

Inf i[f ] = Inf j [f ] ∀i, j ∈ [n] (11.1.1)

Example 11.8. AND, OR, PARITY, MAJORITY are all symmetric, which implies that they are transitive.

Example 11.9. Tribes function is transitive but not symmetric.

Example 11.10. Dictator function is neither transitive nor symmetric.

11.2 Bounds of Maximum Individual Influence v

Recall that as a corollary of Poincare Inequality, we obtained the following bound 10.23.

1

n
V ar[f ] ≤ max

i
Inf i[f ] ≤ V ar[f ]

As for functions that are "somewhat" balanced, we have obtained asymptotically tight bounds on maximum
individual influence.

Theorem 11.11 ( [KKL88]). Let f : {−1, 1}n → {−1, 1}. Then there exists a coordinate i ∈ [n] such that

Inf i[f ] ≥ Ω(
lnn

n
) · V ar[f ] (11.2.1)

In other words, if f is not "too unbalanced", for example, neither p nor 1− p is too small, then we have

Inf i[f ] ≥ Ω(
lnn

n
)

Notice that this is tight and the Tribes function serves as an example.
A generalisation of this result is given by Talagrand.

Theorem 11.12 ( [Tal94]).
n∑
i=1

Inf i[f ]

log
(

1
Infi[f ]

) ≥ Ω(V ar[f ]) (11.2.2)

Notice that this theorem implies the Kahn-Kalai-Linial theorem 11.11. Specifically,

max
i∈[n]

Inf i[f ]

log
(

1
Infi[f ]

) ≥ 1

n

n∑
i=1

Inf i[f ]

log
(

1
Infi[f ]

) ≥ 1

n
Ω(V ar[f ])

Another bound relates the decision tree.
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Theorem 11.13 ( [OSSS05]). If f : {−1, 1}n → {−1, 1} is "almost balanced" and has a decision tree with depth
d, then

max
i∈[n]

Inf i[f ] ≥ Ω(
1

d
) (11.2.3)

11.3 Influence of Coalitions v

Let S ⊆ [n], we denote the influence of this coalition

InfS [f ] = Py∈{−1,1}n−|S| [fs,y is not a constant] (11.3.1)

where fs,y is a sub-function over variables in S with y fixed. A corollary of the Kahn-Kalai-Linial theorem 11.11
gives a bound on the concentration of influence

Corollary 11.14. If f : {−1, 1}n → {−1, 1} is "almost balanced", then for all ε > 0, there exists a coalition
S ⊆ [n] of size

|S| ≤ O(log(
1

ε
)
n

log n
) (11.3.2)

such that InfS [f ] ≥ 1− ε.

This bound is conjectured to be tight. The following result of Ajtai and Linial shows that the bound is "almost"
tight.

Theorem 11.15 ( [AL93]). There exists a balanced function f such that for all S ⊆ [n] with |S| ≤ o( n
log2 n

),

InfS [f ] ≤ o(1) (11.3.3)

Such function f is resilient against "large" coalitions that would like to dominate the influence. However, no
explicit f is known.

Example 11.16. Even though the tribes function is quite balanced and resilient against influential individuals,
it is not very resilient against coalitions. Notice that there exists a set S, |S| = O(log n) such that

InfS [f ] ≥ Ω(1) (11.3.4)

Example 11.17. The MAJORITY function is resilient against coalitions with size at most n1/2−ε for some ε > 0.
The ITERATED MAJORITY function is resilient against coalitions with size at most nlog3 2.

11.4 Juntas v

Another class of functions of interest are those with small total influences.

Definition 11.18. A function f : {−1, 1}n → {−1, 1} is called a k-junta for k ∈ N of it depends on at most k of
its input variables.

Notice that for each of the k variables, its influence is at most 1. Hence, we obtain the following proposition.

Proposition 11.19. If f : {−1, 1}n → {−1, 1} is a k-junta, then I[f ] ≤ k.

The following theorem states that a function f : {−1, 1}n → {−1, 1} is ε-close to a 2O(I[f ]/ε)-junta for any
0 < ε < 1.

Theorem 11.20 (Friedgut’s Junta Theorem). For a function f : {−1, 1}n → {−1, 1}, and any 0 < ε < 1, there
exists a function g : {−1, 1}n → {−1, 1} such that

• g is a 2O(I[f ]/ε)-junta.

• Px[f(x) 6= g(x)] ≤ ε.
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12 ISOPERIMETRIC PROBLEM FOR GRAPHS

12 Isoperimetric Problem for Graphs

The classical isoperimetric problem is to find, among all closed curves of a given length, the one which encloses
the maximum area. The analogue for graphs is natural. Consider a graph G = (V,E) and a subset of vertices
S ⊆ V . Let F be the set of all edges in E that connect the vertices within S. We say that H = (S, F ) is the
induced subgraph with vertex set S. We say the edge boundary of H is the set of edges joining a vertex in S to a
vertex outside of S. We say the vertex boundary of H is the set of vertices outside of S, which are joined to some
vertices in S. The isoperimetric problem for graphs is to find a set S whose induced subgraph has the smallest
sized boundary.
Consider the n-dimensional Boolean hypercube, in which two vertices are connected by an edge if and only if they
differ in exactly 1 coordinate. Harper [Har64] [Har66] has shown that

• Among all a subgraphs with m = 2k vertices, for some k ∈ N, the k-dimensional sub-cube has the smallest
possible edge boundary.

• Among all a subgraphs with m =
∑r
i=0

(
n
i

)
vertices, for some r ∈ N, the Hamming ball of radius r has the

smallest possible vertex boundary.

12.1 Edge Isoperimetric Inequalities v

One question of interest is to give lower bounds on the number of edges in the edge boundary for subgraphs with
a given number m of vertices.

Notation 12.1. Let S ⊆ V be a subset of vertices. We write E(S, S̄) to denote set of edges joining a vertex in S
to a vertex outside of S.

The following corollary stresses that the Poincare Inequality is an isoperimetric inequality.

Corollary 12.2. Let S ⊆ {−1, 1}n have |S| = α2n. Then |E(S, S̄)| ≥ 2α(1− α)2n

Proof. Let f : {−1, 1}n → {−1, 1} be a function such that f(x) = −1 for x ∈ S and f(x) = 1 otherwise.
By remark 10.10, we have I[f ] = |E(S, S̄)|21−n. By lemma 10.21 the variance of f is given by Var[f ] = 4α(1−α).
The Poincare Inequality 10.22 gives us I[f ] ≥ Var[f ]. Hence |E(S, S̄)| ≥ 2α(1− α)2n.

Notice that Poincare Inequality is not very strong. In fact, in [Har64], Harper gives a classical isoperimetric
inequality:

|E(S, S̄)| ≥ |S| log(
2n

|S|
) (12.1.1)

By replacing |S| with α2n, we obtain the following theorem.

Theorem 12.3. For f : {−1, 1}n → {−1, 1} with α = Px[f(x) = −1],

I[f ] =
|E(S, S̄)|

2n−1
≥ |S| log(2n/|S|)

2n−1
=
α2n log(2n/(α2n))

2n−1
= 2α log(1/α) (12.1.2)

Notice that this inequality is tight, as the equality holds for the (n− k)-dimensional sub-cube for |S| = 2n−k.
That is, |E(S, S̄)| = 2n−kk = |S| log(2n/|S|).
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13 SENSITIVITY CONJECTURE

13 Sensitivity Conjecture

13.1 Complexity Measures v

Notation 13.1. For x ∈ {0, 1}n and i ∈ [n], we use xi to denote the string x with the ith bit flipped. For
x ∈ {0, 1}n and S ⊆ [n], we use xS to denote the string x with all bits in S flipped. For this section, it is
convenient to discuss the concepts in {0, 1} setting.

Recall the definition of sensitivity,

Definition 13.2. The sensitivity of a Boolean function f : {0, 1}n → {0, 1} on input x ∈ {0, 1}n is defined as

s(f, x) := # of coordinates i such that f(x) 6= f(xi) (13.1.1)

The sensitivity of a Boolean function f : {0, 1}n → {0, 1} is defined as

s(f) := max
x∼{0,1}n

s(f, x) (13.1.2)

We define the 1-sided measures of sensitivity by

s0(f) := max
x∈f−1(0)

s(f, x) s1(f) := max
x∈f−1(1)

s(f, x) (13.1.3)

For a boolean function f , let CREW(f) denote the number of steps needed to needed to compute f on a
concurrent read, exclusive write parallel random access machine (CREW PRAM) with an unlimited number of
processors and memory cells). In 1982, Cook, Dwork and Reischuk found that the CREW PRAM complexity of
f could be lower bounded by the logarithm of its sensitivity.

Theorem 13.3 ( [CD82], [Rei82]). CREW(f) ≥ Ω(log s(f)).

Definition 13.4 (Block Sensitivity). The block sensitivity of a Boolean function f : {0, 1}n → {0, 1} on
input x ∈ {0, 1}n is defined as the maximum number of mutually disjoint blocks B1, B2, ..., Bt ⊆ [n] such that
f(x) 6= f(xBi) for all i ∈ [t]. The block sensitivity of a Boolean function f : {0, 1}n → {0, 1} is defined as

bs(f) := max
x∼{0,1}n

bs(f, x) (13.1.4)

Similarly, the 1-sided measures of block sensitivity are

bs0(f) := max
x∈f−1(0)

bs(f, x) bs1(f) := max
x∈f−1(1)

bs(f, x) (13.1.5)

Recall the definition of decision tree complexity 7.3, D(f), the minimum depth of any boolean decision tree
computing f . In 1989, Nisan linked the bound of CREW(f) with decision tree complexity and block sensitivity.

Theorem 13.5 ( [Nis89]). For any function f , CREW(f) = Θ(logD(f)) = Θ(log bs(f)).

Example 13.6. Consider the OR function: OR(x1, ..., xn) = x1 ∨ x2 ∨ ... ∨ xn. We have

• For the 0-input, when x = 00...0, s(OR, x) = n.

• For all inputs x with Hamming weight 1, we have s(OR, x) = 1.

• For all other inputs x, s(OR, x) = 0.

Hence, s0(OR) = n, s1(OR) = 1, s(OR) = max{s0(OR), s1(OR)} = n. As for block sensitivity,

• For the 0-input, when x = 00...0, bs(OR, x) = n.

• For all other inputs x, bs(OR, x) = 1.
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Hence, bs0(OR) = n, bs1(OR) = 1, bs(OR) = max{bs0(OR), bs1(OR)} = n.

Notice that for any function f , s(f) ≤ bs(f) as block sensitivity generalises sensitivity. Moreover, for monotone
functions, we have s(f) = bs(f).

Theorem 13.7 ( [Nis89]). For any monotone function f, s(f) = bs(f).

What about other functions? The best known separation between sensitivity and block sensitivity of a function
remained quadratic since 1995. Various constructions have been given below. Notice that a separation that achieves
a constant greater than 1 will imply a superquadratic separation.

• [Rub95] bs(f) = 1
2s(f)2.

• [Cha05] bs(f) = 1
4s(f)2.

• [Vir11] bs(f) = 1
2s(f)2 + 1

2s(f).

• [AS11] bf(s) = 2
3s(f)2 − 1

3s(f).

• [GSTW16] bs(f) = 1
2s(f)2 + 1

2s(f).

• [CG18] bs(f) ≥ Ω(s(f)2) with constant 1/4, 1/2, 2/3.

Notation 13.8. For a binary string x ∈ {0, 1}n and a subset S ⊆ [n], we write x|S be the values of xi on the
coordinates i ∈ S.

Definition 13.9 (Certificate Complexity). A certificate of a Boolean function f : {0, 1}n → {0, 1} on input
x ∈ {0, 1}n is a subset S ⊆ [n] such that for all y ∈ {0, 1}n, if x|S = y|S , then f(x) = f(y). That is, f is constant
if the bits in S are fixed to xi,∀i ∈ S.
The certificate complexity of a Boolean function f : {0, 1}n → {0, 1} on input x ∈ {0, 1}n, denoted by C(f, x),
is the smallest size of a certificate of f on x. The certificate complexity of f is defined as

C(f) := max
x∼{0,1}n

C(f, x) (13.1.6)

Similarly,
C0(f) := max

x∈f−1(0)
C(f, x) C1(f) := max

x∈f−1(1)
C(f, x) (13.1.7)

Example 13.10. For the function OR6 on x = (101000), we have {x3} is a certificate.

Theorem 13.11 ( [Nis89]). For any monotone function f, s(f) = bs(f) = C(f).

Definition 13.12 (Fourier Degree). We say that a polynomial p : Rn → R represents a Boolean function f :
{0, 1}n → {0, 1} if for all x ∈ {0, 1}n,

p(x) = f(x) (13.1.8)

The (Fourier) degree of f , denoted deg(f), is the degree of the unique multilinear polynomial that represents f .

Recall that we denote D(f) as the minimum depth of any boolean decision tree computing f . By definition,
we see that s(f) ≤ bs(f) ≤ C(f) ≤ D(f). It also turns out that bs(f), C(f), D(f) and deg(f) are polynomially
related. We list some of the results below.

• [NS92] deg(f) ≤ D(f).

• [NS92,Tal13] bs(f) ≤ deg(f)2.

• [BI87,Tar89,AUY83] D(f) ≤ C0C1(f) ≤ C(f)2.

• [Nis89] C(f) ≤ bs(f)2.
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13.1.1 The Sensitivity Conjecture

In [NS92], Nisan and Szegedy asks the following question.
Question 13.13. Is it true that for every Boolean function f, bs(s) ≤ poly(s(f))?

Ambainis, Gao, Mao, Sun and Zuo have shown the following.

Theorem 13.14 ( [AGM+13]). bs(f) ≤ s(f)2s(f)−1.

Recently, Huang proved the sensitivity conjecture by combining the Gotsman-Lineal Theorem and results from
linear algebra, which we will show later.

Theorem 13.15 ( [Hua19]). deg(f) ≤ s(f)2.

Because bs(f) ≤ deg(f)2, we obtain bs(f) ≤ s(f)4. Also, Laplante, Naserasr and Sunny have shown the
following

Theorem 13.16 ( [LNS20]). deg(f) ≤ s0(f)s1(f).

13.2 Gotsman-Lineal Theorem v

Notation 13.17. For a graph H = (V,E), we let ∆(H) denote the maximum degree of H.
For an induced subgraph G = (VG, EG) of H, we write H −G = (V \ VG, EH−G), the subgraph that contains all
vertices that are not in VG and all edges incident to V \ VG.
We write Γ(G) as the maximum of ∆(G) and ∆(H −G).

Γ(G) := max{∆(G),∆(H −G)}. (13.2.1)

Notation 13.18. We let Qn denote a Boolean cube of dimension n.

Theorem 13.19 (Gotsman-Lineal Theorem [GL92]). For any monotone function φ : N → R, the following are
equivalent:

(a) For any induced subgraph G ⊆ Qn with |V (G)| 6= 2n−1, we have

Γ(G) ≥ φ(n) (13.2.2)

(b) For any Boolean function f : {−1, 1}n → {−1, 1},

s(f) ≥ φ(deg(f)) (13.2.3)

We first present two auxiliary lemmas.

Lemma 13.20. Let p : {−1, 1}n → {−1, 1} is the parity function. For any Boolean function f : {−1, 1}n →
{−1, 1}, we have

∀S ∈ [n], f̂(S) = f̂p([n] \ S). (13.2.4)

Proof. Note that

f̂(S) = 〈f, χS〉 = 2−n
∑

x∈{0,1}n
f(x)χS(x) (13.2.5)

On the other hand,

f̂p(T ) = 〈fp, χT 〉 = 2−n
∑

x∈{0,1}n
f(x)p(x)χT (x) (13.2.6)

Because p(x) is the parity function, p(x)χT (x) = χ[n]\T (x). Setting S = [n]\T , we then have f̂(S) = 2−n
∑
x∈{0,1}n f(x)χS(x) =

2−n
∑
x∈{0,1}n f(x)χ[n]\T (x) = f̂p(T ) = f̂p([n] \ S).
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Lemma 13.21. Let p : {−1, 1}n → {−1, 1} is the parity function. For any f : {−1, 1}n → {−1, 1} with degree n
and any induced subgraph G of Qn such that

V (G) = {x ∈ {−1, 1}n|f(x) · p(x) = 1} where p is the parity function (13.2.7)

we have Γ(G) = s(f).

Proof. Note that because p is a parity function, which is sensitive to every bit, we must have s(fp, x) = n−s(f, x).
Hence, we have that ∀x ∈ V (G),

degG(x) = n− s(fp, x) = s(f, x)

degQn−G(x) = s(f, x)
(13.2.8)

In other words, we have Γ(G) = s(f).

Now we are ready to prove the Gotsman-Lineal Theorem.

proof of Gotsman-Lineal Theorem. We first show that (b) is equivalent to the following statement:

(b′) For any Boolean function f : {−1, 1}n → {−1, 1} with degree n,

s(f) ≥ φ(n) (13.2.9)

Notice that the (b)⇒ (b′) is trivial. To show that (b′)⇒ (b), we let f be a Boolean function whose degree d < n.
Then f̂(S) 6= 0 for some S ⊆ [n], |S| = d. Without loss of generality, suppose x1, ..., xd appears with nonzero
coefficient in the Fourier expansion of f ; for example f([d]) 6= 0. Let g : {−1, 1}d → {−1, 1} be defined as

g(x1, x2, ..., xd) := f(x1, x2, ..., xd, 0, ..., 0) (13.2.10)

We then have by the assumption in (b′), s(f) ≥ s(g) ≥ φ(d) = φ(deg(f)).

It remains to show that (a)⇔ (b′).
We first show (a) ⇒ (b′) by contraposition. Suppose that f : {−1, 1}n → {−1, 1} is a Boolean function with
deg(f) = n and s(f) < φ(n). Let G be an induced subgraph G of Qn such that

V (G) = {x ∈ {−1, 1}n|f(x) · p(x) = 1} where p is the parity function (13.2.11)

By lemma 13.20, we have that f̂p(∅) = f̂([n]), which is nonzero because deg(f) = n. This implies that
|V (G)| 6= 2n−1. The reason is that if |V (G)| = 2n−1, then f(x)p(x) = 1 for exactly half of the time and
f(x)p(x) = −1 for exactly the other half of the time. However, Ex∈{0,1}n [f(x)p(x)] = f̂p(∅) 6= 0. By lemma 13.21,
we have Γ(G) = s(f) < φ(n), which leads to the contrapositive of (a).

We again show (b′) ⇒ (a) by contraposition. Let the induced subgraph G ⊆ Qn with |V (G)| 6= 2n−1 satisfy
Γ(G) < φ(n). We define a function f : {−1, 1}n → {−1, 1} by

f(x)p(x) = 1⇔ x ∈ V (G) (13.2.12)

Again, because |V (G)| 6= 2n−1, 0 6= Ex∈{0,1}n [f(x)p(x)] = f̂p(∅) = f̂([n]). Hence, f has degree n. Also, by lemma
13.21, s(f) = Γ(G) < φ(n), which leads to the contrapositive of (b’).

13.3 Huang’s result v

In [Hua19], Huang proved part (a) of the Gotsman-Lineal Theorem with φ(t) =
√
t. Specifically,

Theorem 13.22 ( [Hua19]). For any induced subgraph G ⊆ Qn with |V (G)| 6= 2n−1, we have

Γ(G) ≥
√
n (13.3.1)
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Because for any Boolean function f : {−1, 1}n → {−1, 1}, s(f) = Γ(G) by lemma 13.21 and deg(f) ≤ n, we
immediately have the following corollary.

Corollary 13.23. For any Boolean function f : {−1, 1}n → {−1, 1}, deg(f) ≤ s(f)2.

To prove, Huang’s theorem, we will need a few auxiliary lemmas from spectral graph theory and linear algebra.

Lemma 13.24. For any graph G,∆(G) ≥ |λ1| where λ1 is the largest eigenvalue of the adjacency matrix of G.

Proof. Let A ∈ {1, 0}n×n be the adjacency matrix of G and let v be the eigenvector of A with respect to λ1.
Hence, we have λ1v = Av. Without loss of generality, we can assume v1 ≥ vj for all 1 < j ≤ m. Hence,

|λ1v1| = |(Av)1| = |
n∑
j=1

A1jvj | = |
∑

j:A1j=1

A1jvj | ≤ |
∑

j:A1j=1

A1jv1| ≤
∑

j:A1j=1

|A1j ||v1| (13.3.2)

Because ∆(G) =
∑
j:A1j=1 |A1j |, we obtain that |λ1v1| ≤ ∆(G)|v1| and thus λ1 ≤ ∆(G).

Remark 13.25. Notice that the lemma remains true if some +1 in A is replaced by −1 because |
∑
j:A1j=1A1jv1| ≤∑

j:A1j=1 |A1j ||v1| still holds.
We state the following result from linear algebra without proof.

Theorem 13.26 (Cauchy’s Interlace Theorem). Let A be a symmetric n× n matrix and B be a m×m principal
submatrix of A for some m < n. IF the eigenvalues of A are λ1 ≥ λ2 ≥ ... ≥ λn and the eigenvalues of B are
µ1, µ2, ..., µm, then for all 1 ≤ i ≤ m, we have

λi ≥ µi ≥ λi+n−m (13.3.3)

The following corollary is immediate from the Cauchy’s Interlace Theorem.

Corollary 13.27. Let A be a symmetric 2n × 2n matrix and B be a 2n−1 + 1× 2n−1 + 1 principal submatrix of
A. Then µ1 ≥ λ1+2n−(2n−1+1) = λ2n−1 .

Lemma 13.28. Let Bn ∈ {0, 1}2
n×2n be the adjacency matrix of Qn. There is a matrix An ∈ {−1, 0, 1}2n×2n

obtained by replacing some of the +1 entries in Bn by −1 such that exactly a half of the eigenvalues of An are
√
n

and the other half −
√
n.

Proof. Let In ∈ {0, 1}2
n×2n denote the identity matrix. Notice that Bn can be recursively defined as follows:

• B1 :=

[
0 1
1 0

]
.

• Bn+1 :=

[
Bn In
In Bn

]
.

Similarly, we define A by

• A1 := B1 =

[
0 1
1 0

]
.

• An+1 :=

[
An In
In −An

]
.

We now show that A2
n = nIn. As for the base case, we have[

0 1
1 0

]
×
[
0 1
1 0

]
=

[
1 0
0 1

]
. (13.3.4)

38



13.4 Consequences of the Sensitivity Conjecture 13 SENSITIVITY CONJECTURE

For n > 1, assume that A2
n = nIn, we have[

An In
In −An

]2

=

[
A2
n + I2

n AnIn −AnIn
AnIn −AnIn A2

n + I2
n

]
=

[
(n+ 1)In 0

0 (n+ 1)In

]
= (n+ 1)In+1. (13.3.5)

This implies An has one unique eigenvalue n. Because An and A2
n have exactly the same set of eigenvectors, we

have that the eigenvalue λi of A is either
√
n or −

√
n.

Note that for a real symmetric N ×N matrix Q = (qij), the sum of all eigenvalues
∑N
i=1 λi is equal to the trace

tr(Q) =
∑N
i=1 qii. Hence, it must be the case that exactly a half of the eigenvalues of An are

√
n and the other

half −
√
n as

∑N
i=1 aii = 0.

proof of theorem 13.22. Let Bn ∈ {0, 1}2
n×2n be the adjacency matrix of Qn. Let A be constructed as described

in the above lemma. Take any 2n−1 + 1 vertices of Qn and let C be the corresponding (2n−1 + 1) × (2n−1 + 1)
submatrix of A. Hence, we obtain an subgraph G = (V,E) of Qn with |V | = 2n−1 + 1 and by corollary 13.27
∆(G) ≥ µ1(C) ≥ λ2n−1(A) =

√
n.

13.4 Consequences of the Sensitivity Conjecture v
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14 PSEUDORANDOMNESS

14 Pseudorandomness

Let Un denote the uniform distribution of an n-bit string. We can think of a general probability distribution as a
non-negative function D : {−1, 1}n → R≥0 satisfying

• ∀x ∈ {−1, 1}n, D(x) ≥ 0, and

•
∑
x∈{−1,1}n D(x) = 1.

The notion of probability density function follows naturally.

Definition 14.1. A (probability) density function ϕD : {−1, 1}n → R≥0 of a distribution D is a nonnegative
function defined by

ϕD(x) = 2nD(x) (14.0.1)

Notice that Ex∼Un [ϕD(x)] = 1. Observe that for any g : {−1, 1}n → R,

Ey∼D[g(y)] =
1

2n
〈ϕD, g〉 =

1

2n
Ex∼Un [ϕ(x)g(x)] (14.0.2)

In particular, we have that for a nonempty set S ⊆ [n], if we replace g by χS ,

ϕ̂D(S) = Ex∼Un [ϕ(x)χS(x)] = Ey∼D[χS(y)] (14.0.3)

Example 14.2. We have that the density function of a uniform distribution Un is simply a constant 1 function
and

ϕ̂Un(∅) = Ey∼Un [χ∅(y)] = 1

ϕ̂Un(S) = Ey∼Un [χS(y)] = 0 for S 6= ∅
(14.0.4)

Definition 14.3. Let D be a distribution and A be a family of functions f : {−1, 1}n → R. We say that the
distribution ε-fools A if

|Ey∼D[f(y)]− Ex∼Un [f(x)]| ≤ ε (14.0.5)

for any f ∈ A.

Definition 14.4. For a distribution D : {−1, 1}n → R≥0, we say that ϕD : {−1, 1}n → R≥0 is a ε-biased
density function if

|ϕ̂D(S)| ≤ ε (14.0.6)

for any S 6= ∅. We also call D an ε-biased distribution.

In other words, the Fourier coefficients of the density function of a small biased distribution is "similar" to
those of the uniform distribution.

Remark 14.5. Notice that "Bias" has several meanings:

• A distribution D with an ε-biased density function is called an ε-biased distribution.

• We say that a p-biased distribution if each bit is independently chosen to be 1 with probability p and −1
with probability (1− p).

• As for a function f : {−1, 1}n → {−1, 1}, we have bias(f) = Ex∼Un [f(x)].

• We say that a function f : {−1, 1}n → R is ε-regular if |̂(f)(S)| ≤ ε for all nonempty subset S ⊆ [n]. Notice
that this is same as ε-biased for density functions ϕD : {−1, 1}n → R≥0.

Definition 14.6 (Pseudorandom Generators). We say that a function G : {−1, 1}r → {−1, 1}n, r < n, is an
ε-biased pseudorandom generator(PRG) if the output distribution G(Ur) is an ε-biased distribution.
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Definition 14.7. The sample space or support of a distribution D : {−1, 1}n → R≥0 is defined by

ΣD = {x ∈ {−1, 1}n|D(x) 6= 0}. (14.0.7)

Remark 14.8. Notice that because the input of G is from {−1, 1}r, the support of G(Ur) has at most 2r strings.

Definition 14.9. We say that f : {−1, 1}n → {−1, 1} is a Bent function if f̂(S) = ±2−n/2 for all S ⊆ [n].

Example 14.10. The inner product mod 2 function f : {−1, 1}n → {−1, 1}, n = 2t has Fourier coefficients
±2−n/2 and is thus a Bent function. The 0/1 version of the inner product mod 2 function f : {−1, 1}n →
{0, 1}, n = 2t can be viewed as a density function and its corresponding distribution is 1/2n/2-biased. However,
the sample space is {−1, 1}n and thus very large.

Essentially, we would like an ε-biased distribution with small sample space. In the next section, we will show
an efficient constructions of ε-biased distributions in [AGHP92]. Before that, we present the following example to
show the equivalence of constructing small biased distributions and fooling parity functions.

Example 14.11. Notice that if G : {−1, 1}r → {−1, 1}n, r << n, is an ε-biased pseudorandom generator, then
the output distribution G(Ur) fools any parity function because for any nonempty set S ⊆ [n],

|Ey∼G(Ur)[χS(y)]− Ex∼Un [χS(x)]| = |Ey∼G(Ur)[χS(y)]| = ϕ̂G(Ur)(S) ≤ ε (14.0.8)

The first equality comes from the fact that the expectation of any parity function of a nonempty set is zero. The
second equality follows from equation 14.0.3 and the third from the definition 14.4.
Notice that the output distribution has a sample space |ΣG(Ur)| ≤ 2r as shown in remark 14.8.

14.1 Efficient Constructions of ε-Biased Distributions with Small Sample Spaces v

In this section, we show the construction due to Alon, Goldreich, Hastad and Peralta that proves the following
theorem.

Theorem 14.12 ( [AGHP92]). There exists a deterministic algorithm that given input n, ε, outputs in poly(n/ε)
time a set Σ ∈ {0, 1}n with |Σ| = O((n/ε)2) such that the uniform distribution on Σ is ε-biased.

This theorem implies that there is an ε-biased pseudorandom generator that maps 2 log(n/ε) truly random bits
to n bits. We remark that |Σ| = O((n/ε)2) is almost best possible. Before we get into the proof, we introduced
some concepts related to finite fields.

Proof of Theorem 14.12. Let m = log(n/ε). Assume that an irreducible polynomial p of degree m is given. We
use p to represent field elements in F2m as bit strings of length m.
Let (x, y) be an ordered pair where x and y are both of length m. We write xi as the i-th power of x in F2m and
(xi, y)2 the inner product of xi and y, modular 2. Let r = r0...rn−1 be elements of the sample space Σ, where each

ri = (xi, y)2. (14.1.1)

Hence, we have
|Σ| = 2m × 2m = (n/ε)2. (14.1.2)

As we have seen in example 14.11, it suffices to show that the uniform distribution on Σε-fools parity function χS
for any S 6= ∅. Consider s = s0...sn−1, the characteristic vector of a nonempty set S ⊂ [n], and the polynomial
ps(t) =

∑n−1
i=0 sit

i over F2m . Notice that because r, s ∈ {0, 1}n, the parity

χS(r) = (−1)(s,r)2 (14.1.3)

Thus, it suffices to show that (s, r)2 = 1 for 1/2 +±ε fractions of r ∈ Σ. Now,

(s, r)2 =

n−1∑
i=0

siri =

n−1∑
i=0

si(x
i, y)2 =

n−1∑
i=0

si(

m−1∑
j=0

xij · yj) =

m−1∑
j=0

(

n−1∑
i=0

si · xij) · yj =

m−1∑
j=0

(

n−1∑
i=0

si · xi)j · yj (14.1.4)

41
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Because ps(t) =
∑n−1
i=0 sit

i, we have

(s, r)2 =

m−1∑
j=0

(ps(x))j · yj = (ps(x), y)2 (14.1.5)

Consider all possible y ∈ {0, 1}m,

Case 1: If ps(x) 6= 0 for fixed x, then ps(x) is also fixed. Therefore, (ps(x), y)2 = 0 for exactly half of all possible y
because .

Case 2: If ps(x) = 0, then (ps(x), y)2 = 0 for all y. However, because ps has degree n−1, ps(x) = 0 for at most n−1
possible x.

Overall, we have (ps(x), y)2 = 0 on at most

1

2
+
n− 1

2m
<

1

2
+

n

2m
=

1

2
+ ε

fraction of (x, y) ∈ {0, 1}2m and thus at most 1
2 + ε fraction of r ∈ Σ.

We now show that |Σ| = O((n/ε)2) is almost optimal. Before that, we state Alon’s result for perturbed identity
matrices.

Theorem 14.13 ( [Alo09]). Let A be an N × N real matrix with Ai,i = 1 and |Ai,j | ≤ ε for i 6= j, where
1/
√
n ≤ ε ≤ 1/2, then

rank(A) ≥ Ω(
logN

ε2 log(1/ε)
) (14.1.6)

Claim 14.14. The number of random bits Ω(log(n/ε)) is optimal up to some hidden constant.

Proof. Let G : {0, 1}r → {0, 1}n be a ε-biased PRG. For a characteristic vector of a nonempty set S ⊂ [n], s =
s0...sn−1, we define a real vector vs of length 2r by

vs =
1

2r/2

(
(−1)(G(x),s)2 : x ∈ {0, 1}r

)
(14.1.7)

Now, let A be a 2n × 2n matrix defined by

As,t = (vs, vt) =
1

2r

∑
x∈{0,1}r

(−1)(G(x),s)2(−1)(G(x),t)2 =
1

2r

∑
x∈{0,1}r

(−1)(G(x),s⊕t)2 (14.1.8)

In other words, let V be a 2n × 2r matrix with rows vs, we define A by

A = V · V T (14.1.9)

Because for any nonempty set S, (G(x), s)2 = 0 for 1/2± ε fraction of time, we have

As,s = 1

|As,t| ≤ ε
(14.1.10)

Thus, by theorem 14.13, we have rank(A) ≥ Ω( logN
ε2 log(1/ε) ). Because A can be at most full rank, i.e. rank(A) ≤ 2r,

we have
2r ≥ Ω(

logN

ε2 log(1/ε)
) (14.1.11)

and thus r ≥ Ω(log(n/ε)).
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14.2 Higher Degree Polynomials v

So far, we have seen that ε-biased distributions can fool parity functions [NN93], [AGHP92], which are linear
functions over any field. How about higher degree polynomials? The following example shows that small biased
distributions may not fool quadratic polynomials.

Example 14.15. Consider the inner product mod 2 as a degree 2 polynomial over F2. That is, we define
IP: Fn2 → F2 by

IP(x) = x1x2 + x3x4 + ...+ xn−1xn (14.2.1)

We have seen in example 14.10, IP is an 1/2n/2-biased Bent function. Now, consider the 1/2n/2-biased distribution
D with density function

ϕD = IP (14.2.2)

then we have the function IP is constant on the support of D and hence D does not fool the quadratic polynomial
IP.

In [LVW93], Luby, Velickovic and Wigderson gave the first non-trivial PRG that fools constant degree poly-
nomials and even constant depth circuits, but it requires a large number of random bits. In [Bog05], Bogdanov
showed optimal constructions of PRGs but it only works when the field size is at least polynomial in the degree.
In [BV07] Bogdanov and Viola gave a new approach, which we will present shortly, for polynomials in small fields;
at the time they showed that the constructed PRG fooled polynomials of degree 2 and 3 and conjectured that it
applied to any degree. Later in [Vio09], Viola proved this conjecture. Note also that in [Lov08], Lovett has shown
a weaker version of this conjecture.

Theorem 14.16 ( [Vio09]). Fix d ≥ 1, ε > 0. Let D be an ε-biased distribution in {0, 1}n and let y1, ..., yd be
independent samples from D. Then for any polynomial h : Fn2 → F2 of degree at most d, then

|Ey1,...,yd∼D[f(y1 + ...+ yd)]− Ex∈Un [f(x)]| ≤ εd (14.2.3)

where f(x) = (−1)h(x), εd = 16 · ε1/2d−1

.

To prove this theorem, we will need the following auxiliary lemma.

Lemma 14.17. Let h : Fn2 → F2 be a polynomial of degree d. We fix y, y′ ∈ Fn2 and define g : Fn2 → F2 by

g(x) := h(x+ y) + h(x+ y′) (14.2.4)

Then g has degree at most d− 1.

Sometimes we informally call g the derivative of h. For intuition, we can assume h and g are multilinear, but
such an assumption is not needed for the proof.

Proof of lemma 14.17. Let xS , |S| = d be the monomial of h(x) with the highest degree. We then have for
g : Fn2 → F2, because y and y′ are fixed, the term (x + y)S + (x + y′)S cancels out. Hence, g has degree at most
d− 1.

Notation 14.18. For the simplicity of notation, we write z ∼ Dd−1 to denote z = y1 + ...+ yd−1 for y1, ..., yd−1

sampled independently from D.

Proof of theorem 14.16. We prove the theorem by induction on the degree d.
Base Step: d = 1. By definition, because D is an ε-biased distribution, we have

|Ey∼D[f(y)]− Ex∈Un [f(x)]| ≤ ε ≤ 16ε = ε1. (14.2.5)

Inductive Step: We assume that the statement holds for all degrees at most d− 1. Let δ =
√
εd−1, we split our

analysis into two cases: Ex∈Un [f(x)] > δ and Ex∈Un [f(x)] ≤ δ.
Case 1: Eu∼Un [f(u)] > δ. We show that

|Ez∼Dd−1
[f(z)]− Ex∼Un [f(x)]| ≤ εd−1

δ
(14.2.6)
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We choose z ∼ Dd−1, x ∼ Un, y ∼ Un and set y′ = 0, we write gy(x) = h(x + y) + h(x + y′) = h(x + y) + h(x).
Then,

Ey,z[(−1)gy(z)]− Ey,x[(−1)gy(x)] = Ey,z[(−1)h(y+z)+h(z)]− Ey,x[(−1)h(y+x)+h(x)] (14.2.7)

Because y is uniformly random, y + z and y + z are also uniformly random. That is,

Ey,z[(−1)gy(z)]− Ey,x[(−1)gy(x)] = Ey,z[(−1)h(y)+h(z)]− Ey,x[(−1)h(y)+h(x)]

= Ey[f(y)] · (Ez[f(z)]− Ex[f(x)])
(14.2.8)

On the other hand, by lemma 14.17, for fixed y ∈ Fn2 and y′ = 0, gy(x) has degree at most d− 1. By the inductive
hypothesis, |Ez[(−1)gy(z)]− Ex[(−1)gy(x)]| ≤ εd−1 and thus

|Ey,z[(−1)gy(z)]− Ey,x[(−1)gy(x)]| ≤ Ey
[
|Ez[(−1)gy(z)]− Ex[(−1)gy(x)]|

]
≤ εd−1 (14.2.9)

Recall that Ey∼Un [f(y)] > δ, which implies

|Ez[f(z)]− Ex[f(x)]| = |Ey,z[(−1)gy(z)]− Ey,x[(−1)gy(x)]|
Ey[f(y)]

≤ εd−1

δ
(14.2.10)

Now, let z′ ∼ Dd, w ∼ Dd−1, v ∼ D. Notice that since x ∼ Un, v + x is uniformly random. Hence,

|Ez′∼Dd [f(z)]− Ex[f(x)]| = |Ev,w[f(v + w)]− Ev,x[f(v + x)]|
≤ Ev|Ew[f(v + w)]− Ex[f(v + x)]|

(14.2.11)

Notice that for fixed v, v +Dd−1 is similar to v +Un to the polynomial f , i.e., v +Dd−1 also fools f . To see this,
suppose on the contrary that v +Dd−1 does not fool f , then for the polynomial f ′(x) = f(v + x), we have

εd−1 < |Ew[f(v + w)]− Ex[f(v + x)]| = |Ew[f ′(w)]− Ex[f ′(x)]| (14.2.12)

That is, Dd−1 also fools f ′. Because for fixed v, f ′(x) has the same degree as f(v+x), this contradicts the inductive
hypothesis. Now, because for fixed v, we have v+x is also uniformly distributed and hence Ex[f(v+x)] > δ. This
gives us |Ew[f(v + w)]− Ex[f(v + x)]| ≤ εd−1/δ and as δ =

√
εd−1,

|Ez′∼Dd [f(z)]− Ex[f(x)]| ≤ Ev|Ew[f(v + w)]− Ex[f(v + x)]| ≤ εd−1

δ
=
√
εd−1 ≤ εd (14.2.13)

Case 2: Eu∼Un [f(u)] ≤ δ. We show that

|Ez′∼Dd [f(z′)]− Ex[f(x)]| ≤ O(δ +
√
εd−1) (14.2.14)

Let x ∼ Un, v ∼ D, v′ ∼ D,w ∼ Dd−1, z
′ ∼ Dd. Notice

|Ez′ [f(z′)]|2 = |Ew,v[f(w + v)]|2 (14.2.15)

Using Cauchy-Schwarz inequality, we have

|Ew,v[f(w + v)]|2 ≤ Ew
[
|Ev[f(w + v)]|2

]
(14.2.16)

Hence,

|Ez′ [f(z′)]|2 ≤ Ew
[
|Ev[f(w + v)]|2

]
= Ew

[
Ev,v′ [f(w + v)f(w + v′)]

]
= Ev,v′

[
Ew[f(w + v)f(w + v′)]

] (14.2.17)

Notice that for fixed v and v′, we have

f(w + v)f(w + v′) = (−1)h(w+v)+h(w+v′) (14.2.18)
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By lemma 14.17, gv,v′(w) = h(w + v) + h(w + v′) has degree at most d − 1. Hence, by the inductive hypothesis,
let f ′(w) = f(w + v)f(w + v′), we have

Ew[f(w + v)f(w + v′)]− Ex[f(x+ v)f(x+ v′)] ≤ |Ew[f(w + v)f(w + v′)]− Ex[f(x+ v)f(x+ v′)]|
≤ εd−1

(14.2.19)

Hence,

|Ez′ [f(z′)]|2 ≤= Ev,v′
[
Ew[f(w + v)f(w + v′)]

]
≤ εd−1 + Ev,v′

[
Ex[f(x+ v)f(x+ v′)]

]
(14.2.20)

Using Fourier expansion, we obtain,

Ev,v′
[
Ex[f(x+ v)f(x+ v′)]

]
= Ev,v′

[
Ex[
( ∑
S⊆[n]

f̂(S)χS(x+ v)
)( ∑

T⊆[n]

f̂(T )χT (x+ v′)
)

]
]

= Ev,v′
[
Ex[

∑
S,T⊆[n]

f̂(S)f̂(T )χS(x+ v)χT (x+ v′)]
]

= Ev,v′
[
Ex[

∑
S,T⊆[n]

f̂(S)f̂(T )χS∆T (x)χS(v)χT (v′)]
] (14.2.21)

where S∆T is the symmetric difference. By linearity of expectation, we have

Ev,v′
[
Ex[f(x+ v)f(x+ v′)]

]
=

∑
S,T⊆[n]

f̂(S)f̂(T )Ev,v′ [χS(v)χT (v′)]Ex[χS∆T (x)] (14.2.22)

By lemma 2.9, we have Ex[χS∆T (x)] = 1 if and only if S = T . Hence,

Ev,v′
[
Ex[f(x+ v)f(x+ v′)]

]
=
∑
S⊆[n]

f̂(S)2Ev,v′ [χS(v)χS(v′)]

= f̂(∅)2 +
∑

|S|>0,S⊆[n]

f̂(S)2Ev,v′ [χS(v)χS(v′)]
(14.2.23)

By lemma 10.20, f̂(∅) = Eu∼Un [f(u)] ≤ δ. Again, by Cauchy-Schwarz inequality, Ev,v′ [χS(v)χS(v′)] ≤ |Ev[χS(v)]Ev′ [χS(v′)]|.
Notice that by equation 14.0.3, for any set S, Ev′ [χS(v′)] = φD(S) ≤ ε because D is ε-biased. In summary, we
have

|Ez′ [f(z′)]|2 ≤ εd−1 + Ev,v′
[
Ex[f(x+ v)f(x+ v′)]

]
εd−1 + f̂(∅)2 +

∑
|S|>0,S⊆[n]

f̂(S)2Ev,v′ [χS(v)χS(v′)]

= εd−1 + δ2 + ε2
∑

|S|>0,S⊆[n]

f̂(S)2 ≤ εd−1 + δ2 + ε2

(14.2.24)

Because δ =
√
εd−1 = εd, we have |Ez′ [f(z′)]|2 ≤ 2εd−1 + ε2 ≤ 4εd−1. Lastly, we have

|Ez′ [f(z′)]− Ex∼Un [f(x)]| ≤ |Ez′ [f(z′)]|+ |Ex∼Un [f(x)]| ≤
√

4εd−1 + δ =≤ 3εd (14.2.25)

14.3 Applications v

ε-biased pseudorandom generators can be used to derandomise any randomised algorithm that is based on the
properties of parity functions over the uniform distribution. In particular, we can use it to derandomise learning
and testing algorithms, such as the BLR test (section 4), the Goldreich-Levin algorithm (section 5.2) and learning
algorithms based on the Goldreich-Levin algorithm.
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15 Noise Operator

Definition 15.1. For 0 ≥ ρ ≥ 1 and f : {−1, 1}n → R, we define the noise operator with parameter ρ, Tρ(f) :
{−1, 1}n → R on the function f by

Tρ(f)(x) = Ey∼µρ [f(y)] (15.0.1)

where we write y ∼ µρ to denote y as a "noisy copy" of x, i.e.,

yi =

{
−xi with probability 1

2 (1− ρ)

xi with probability 1
2 (1 + ρ)

In particular, we say that y is ρ-correlated to x.

Notice that y = x when ρ = 1, which means T1(f)(x) = f(x) and y is uniformly random if ρ = 0. The noise
operator is linear. That is, for some real number λ,

Tρ(f + λg) = Tρ(f) + λTρ(g) (15.0.2)

Example 15.2. For fixed x ∈ {−1, 1}n, we have that for all i,

Ey∼µρ [yi] = ρxi, Ey∼µρ [xiyi] = ρ (15.0.3)

Proposition 15.3.
Tρ(f) =

∑
S⊆[n]

ρ|S|f̂(s)χS (15.0.4)

Proof.

Tρ(f) = Ey∈µρ [χS(y)] = Ey∈µρ [
∏
i∈S

yi] =
∏
i∈S

Ey∈µρ [yi] =
∏
i∈S

ρxi = ρ|S|f̂(s)χS

Example 15.4. If x ∈ {−1, 1}n is chosen uniformly at random and for each x, y ∼ µρ, we say that (x, y) is a
ρ-correlated pair of random strings. Notice that for all i,

E[xi] = E[yi] = 0, E[xiyi] = ρ (15.0.5)

15.1 Lp Norms v

Definition 15.5. Let V be a set. A function ϕ : V → R is a norm if for all u, v ∈ V , we write ||v|| = φ(v) and

1. ||v|| ≥ 0 and ||v|| = 0 if and only if v is the identity element.

2. ||α · v|| = ||α|| · ||v|| for any scalar α ∈ R.

3. ||u+ v|| ≤ ||u||+ ||v||, which is the triangle inequality.

Recall that for f : {−1, 1}n → R, the Lp norm is defined as

||f ||p :=
(
Ex∼Un [|f(x)|p]

)1/p

(15.1.1)

Notice that ||f ||p is a norm when p ≥ 1; otherwise ||f ||p may violate the triangle inequality.

Lemma 15.6. For any c ∈ R and f : {−1, 1}n → R,

||cf ||p ≤ |c|||f ||p (15.1.2)
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Definition 15.7. A real valued function f is convex if for any 0 ≤ λ ≤ 1, we have

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) (15.1.3)

Theorem 15.8 (Jensen’s Inequality). If g is convex and 0 ≤ λi ≤ 1,
∑
i λi = 1, then

g(
∑
i

λixi) ≤
∑
i

λig(xi) (15.1.4)

Theorem 15.9 (Minkowski’s Inequality). Let f, g : {−1, 1}n → R,

||f + g||p ≤ ||f ||p + ||g||p. (15.1.5)

Notice that for the vector norms, the opposite of the following result holds.

Proposition 15.10. For 1 ≤ p ≤ q ≤ ∞, we have

||f ||p ≤ ||f ||q (15.1.6)

Proof. We write π(x) to denote the probability of drawing x from some distribution; as in the case for Lp norm,
π(x) = 2−n.

Ex∈Un [|f(x)|p] =
∑
x

p(x)|f(x)|p (15.1.7)

Let p = 1 and q > 1. Let g(z) = zq/p = zq, we have that g is convex and thus by Jensen’s Inequality,

g(
∑
x

p(x)|f(x)|) =
(∑

x

π(x)|f(x)|
)q
≤
∑
x

p(x)|f(x)|q (15.1.8)

Hence, (
Ex∈Un [|f(x)|p]

)1/p

=
(∑

x

π(x)|f(x)|]
)
≤
(∑

x

π(x)|f(x)|q]
)1/q

=
(
Ex∈Un [|f(x)|q]

)1/q

(15.1.9)

As for the general case, we have g(z) = zq/p is convex because q ≥ p. Hence,

g(
∑
x

p(x)|f(x)|p) =
(∑

x

π(x)|f(x)|p
)q/p

≤
∑
x

p(x)|f(x)|q (15.1.10)

15.2 Contractivity v

Let x, y ∈ {−1, 1}n where y is ρ-correlated to x. It is sometimes convenient to think of y as the coordinate-wise
product as y = x · z where

zi =

{
−1 with probability 1

2 (1− ρ)

1 with probability 1
2 (1 + ρ)

(15.2.1)

Hence, we can write
Tρ(f)(x) = Ez[f(x · z)] (15.2.2)

Proposition 15.11. The noise operator Tρ(f) with parameter 0 ≤ ρ ≤ 1 on function f : {−1, 1}n → R is
contractive, i.e. for p ≥ 1,

||Tρ(f)||p ≤ ||f ||p (15.2.3)
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Proof. Notice

||Tρ(f)||p =
(
Ex∼Un

[
|Ey∼µρ [f(y)]|p

])1/p

=
(
Ex∼Un

[
|Ez[f(x · z)]|p

])1/p

=
(
Ex∼Un

[∣∣∣∑
z

π(z)f(x · z)
∣∣∣p])1/p

(15.2.4)

For each z, let gz(x) = π(z)f(x · z). By Minkowski’s inequality, we have(
Ex∼Un

[∣∣∣∑
z

π(z)f(x · z)
∣∣∣p])1/p

=
(
Ex∼Un

[∣∣∣∑
z

gz(x)
∣∣∣p])1/p

= ||
∑
z

gz||p ≤
∑
z

||gz||p (15.2.5)

Because for fixed z, π(z) is fixed and x · z is uniformly random as x is uniform.

||gz||p =
(
Ex∼Un [|π(z)f(x · z)|p]

)1/p

=
(
Ex∼Un [|π(z)f(x)|p]

)1/p

= ||π(z)f ||p (15.2.6)

By lemma 15.6, ||π(z)f ||p = |π(z)| · ||f ||p. In summary,

||Tρ(f)||p ≤
∑
z

||gz||p =
∑
z

π(z) · ||f ||p = Ez[||f ||p] = ||f ||p (15.2.7)

Remark 15.12. Notice that for 0 ≤ ρ < ρ′ ≤ 1, we have

Tρ(f) = Tρ′′(Tρ′(f)) where ρ′′ =
ρ

ρ′
(15.2.8)

Let g = Tρ′(f), using the theorem we just proved, we have

||Tρ′(f)||p = ||g||p ≥ ||Tρ′′(g)||p = ||Tρ′′(Tρ′(f))||p = ||Tρ(f)||p (15.2.9)

15.3 Hypercontractivity Theorem v

Recall that for 1 ≤ p ≤ q ≤ ∞, we have ||f ||p ≤ ||f ||q. Hence, for all r with 1 ≤ r ≤ p, we have ||Tρ(f)||r ≤
||Tρ(f)||p ≤ ||f ||p. Is there any ρ such that for any r > p, ||Tρ(f)||r ≤ ||f ||p still holds? In fact, we can show the
following theorem.

Theorem 15.13 (Hypercontractivity Theorem). Let f : {−1, 1}n → R. For any 1 ≤ p ≤ q ≤ ∞ and

0 ≤ ρ ≤
√
p− 1

q − 1

we have ||Tρ(f)||q ≤ ||f ||p.

We prove this by induction on n.
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15.3.1 Base step: n = 1

Let a = f(1), b = f(−1). Without loss of generality, we assume that a > 0, b > 0.

||Tρ(f)||q =
(
Ex∼Un

[
|Ey∼µρ [f(y)]|q

])1/q

=
(
Ex∼Un

[
|Ez[f(x · z)]|q

])1/q

=
[1

2

∣∣∣1
2

(1− ρ)f(1) +
1

2
(1 + ρ)f(−1)

∣∣∣q +
1

2

∣∣∣1
2

(1 + ρ)f(1) +
1

2
(1− ρ)f(−1)

∣∣∣q]1/q
=
[1

2

∣∣∣1
2

(1− ρ)a+
1

2
(1 + ρ)b

∣∣∣q +
1

2

∣∣∣1
2

(1 + ρ)a+
1

2
(1− ρ)b

∣∣∣q]1/q
=
[1

2

(a+ b

2
− ρa− b

2

)q
+

1

2

(a+ b

2
+ ρ

a− b
2

)q]1/q
=
a+ b

2

[1

2

(
1− ρa− b

a+ b

)q
+

1

2

(
1 + ρ

a− b
a+ b

)q]1/q
(15.3.1)

Let α = (a− b)/(a+ b). Then

||Tρ(f)||q =
a+ b

2

[1

2

(
1− ρα

)q
+

1

2

(
1 + ρα

)q]1/q
(15.3.2)

Notice
||f ||q = ||T1(f)||q =

a+ b

2

[1

2

(
1− α

)q
+

1

2

(
1 + α

)q]1/q
(15.3.3)

Applying Taylor expansion, we have

(1 + ρα)q = 1 + ρqα+
ρ2

2
q(q − 1)α2 + ...

(1− ρα)q = 1− ρqα+
ρ2

2
q(q − 1)α2 − ...

(1 + ρα)q + (1− ρα)q = 1 +
ρ2

2
q(q − 1)α2 + ...

(1 + α)p + (1− α)p = 1 +
p(p− 1)

2
α2 + ...

(15.3.4)

Hence, suppose |ρ| ≤
√

(p− 1)/(q − 1), then

ρ2

2
q(q − 1)α2 ≤ q(p− 1)α2 (15.3.5)

One can check that [
(1 + ρα)q + (1− ρα)q

]1/q
≤
[
(1 + α)p + (1− α)p

]1/p
(15.3.6)

which concludes the base step.

15.3.2 Notations

Before we start the inductive step, we introduce some notations.

Definition 15.14. Let µ : X → R be a probability distribution on X and ν : Y → R a probability distribution
on Y . Then µ× ν is a probability distribution on X × Y and

Pµ×ν [x, y] = µ(x) · ν(y) (15.3.7)

We call µ× ν the product distribution.

For example, the uniform distribution on {−1, 1}n and the distribution µρ used for noise operator are product
distributions. Recall the subfunctions of f : X × Y → R:
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• For a fixed x ∈ X, fx : Y → R is a subfunction restricted to Y .

• For a fixed y ∈ Y, fy : X → R is a subfunction restricted to X.

Let X × Y = {−1, 1}n, µ : X → R be a distribution on X and ν : Y → R a probability on Y . We can think of
||fx||p as a function of x, i.e., we define Gp(x) as

Gp(x) := ||fx||p =
(
Ey∼ν [|fx(y)|p]

)1/p

Thus, we can write

||f ||p = ||Gp||p =
(
Ex∼µ[|Gp(x)|p]

)1/p

=
(
Ex∼µEy∼ν [|f(x, y)|p]

)1/p

(15.3.8)

We write TSρ the noise operator applied to the coordinates in subset S, i.e., for f : X × Y → R, let u and v be
defined as z earlier (equation 15.2.1), i.e. x · u ∼ µρ, y · v ∼ νρ; we can write Tρ(f)(x, y) as

Tρ(f)(x, y) = EuEv[f(x · u, y · v)] (15.3.9)

as for fixed x ∈ X, we write TYρ (f)(x, y) as

TYρ (f)(x, y) = Ev[f(x, y · v)] (15.3.10)

For fixed x, notice that the subfunction of Tρ(f)

TYρ (f)x(y) = Ev[fx(y · v)] (15.3.11)

is equivalent to TYρ (fx). We write Hq : X → R as

Hq(x) = ||TYρ (f)x||q (15.3.12)

15.3.3 Inductive step

By induction hypothesis, we have Hq(x) = ||TYρ (f)x||q ≤ ||fx||p. Thus,

||Tρ(f)||q = ||TXρ TYρ (f)||q =
(
ExEy

[∣∣EuEv[f(x · u, y · v)]
∣∣q])1/q

(15.3.13)

Using Jensen’s inequality,

ExEy
[∣∣EuEv[f(x · u, y · v)]

∣∣q] ≤ ExEu
[
Ey
[∣∣Ev[f(x · u, y · v)]

∣∣q]] (15.3.14)

Note that for fixed x and u,

Ev[f(x · u, y · v)] = Ev[fx·u(y · v)] = TYρ (f)x·u(y) (15.3.15)

Hence,
Ey
[∣∣Ev[f(x · u, y · v)]

∣∣q] = Ey
[∣∣TYρ (f)x·u(y)

∣∣q] = |Hq(x · u)|q ≤ ||fx·u||qp (15.3.16)

which gives us

||Tρ(f)||q ≤
(
ExEu

[
||fx·u||qp

])1/q

=
(
ExEu

[(
Ey[|fx·u(y)|p]

)q/p])1/q

(15.3.17)

We denote h(z) := Ey[|fz(y)|p]. Then ||h||q/p =
(
Ez[|h(z)|q/p]

)p/q and by Jensen’s inequality, because q > p,

||h||q/p =
(
Ez[|Ey[|fz(y)|p]|q/p]

)p/q ≤ (Ez[|Ey[|fz(y)|p·q/p]|]
)p/q

=
(
Ey[|Ez[|fy(z)|p·q/p]|]

)p/q
= Ey[|||fy|p||q/p]

(15.3.18)
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Hence,(
ExEu

[(
Ey[|fx·u(y)|p]

)q/p])1/q

=
(
ExEu

[∣∣h(x · u)
∣∣q/p])1/q

= (||h||q/p)1/p ≤
(
Ey[|||fy|p||q/p]

)1/p (15.3.19)

Observe

|||fy|p||q/p =
(
ExEu

[∣∣f(x · u, y)
∣∣p·(q/p)])p/q =

(
ExEu

[∣∣f(x · u, y)
∣∣q])(1/q)·p

= ||TXρ (fy)||pq ≤ ||fy||pp (15.3.20)

where the last inequality follows from the inductive hypothesis. In summary,

||Tρ(f)||q ≤
(
ExEu

[(
Ey[|fx·u(y)|p]

)q/p])1/q

≤
(
Ey[||fy||p]

)1/p
= ||f ||p (15.3.21)

15.4 Matrix Valued Hypercontrativity Theorem v

Notice that when q = 2, by Parseval’s Theorem 3.3 and Proposition 15.3, we have

||Tρ(f)||2 = (Ex∈Un [Tρ(f)2])1/2 = (
∑
S⊆[n]

ρ2|S|f̂(S)2)1/2 (15.4.1)

Hence, for any 1 ≤ p ≤ 2, by setting ρ =
√
p− 1, we have by the Hypercontractivity Theorem 15.13,

(
∑
S⊆[n]

ρ2|S|f̂(S)2)1/2 = ||Tρ(f)||2 ≤ ||f ||p = (
1

2n

∑
x

|f(x)|p)1/p (15.4.2)

In [BARDW08], Ben-Aroya, Regev and De Wolf presented a version of this inequality for matrix-valued functions
on the Boolean cube.

Definition 15.15. Let M be a d× d complex matrix with singular values σ1, ..., σd. The (normalised Schatten)
p-norm is defined by

||M ||p = (
1

d

d∑
i=1

σpi )1/p (15.4.3)

Theorem 15.16 (Matrix Valued Hypercontrativity Theorem, [BARDW08]). LetM be the space of d×d complex
matrices. For any f : {−1, 1}n →M and 1 ≤ p ≤ 2, we have

(
∑
S⊆[n]

(ρ− 1)|S|f̂(S)2)1/2 ≤ (
1

2n

∑
x

|f(x)|p)1/p (15.4.4)

In the same paper, they discussed applications of this theorem in one way quantum communication complexity
and lower bounds on the length of 2-query locally decodable codes.

15.4.1 Locally Decodable Codes Revisited

Recall from section 5.1, we have seen that Hadamard code achieves optimal length for 2-query locally decodable
codes. However, the 2n-bit codewords are too large. On the other hand, for q = 2, we cannot do better than
superpolynomial, as proved in [GKST02] for linear codes and later generalised in [KdW03].

Theorem 15.17 ( [KdW03]). For 2-query locally decodable codes, we have

N ≥ 2Ω(n) (15.4.5)
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Surprisingly, [KdW03] used quantum arguments to show this result. Later in [BARDW08], the same result
was shown by applying the matrix valued hypercontrativity theorem.
As for 3-query locally decodable codes, Yekhanin has shown in [Yek08] that subexponential length 3-query linear
locally decodable codes exist assuming infinitude of Mersenne primes, specifically

N = 22O(logn/ log logn)

(15.4.6)

Note that this is smaller than 2n
ε

but larger than n(logn)c . Later Woodruff [Woo12] gave an Ω(n2) lower bound
for linear 3-query locally decodable codes over any, possibly infinite, field, which is the largest general bound.
In [GM12], Gal and Mills showed that even for 3-query locally decodable codes, N is exponential under some
parameters.

15.5 Noise Stability v

Definition 15.18. For f : {−1, 1}n → R, let (x, y) be ρ-correlated pairs. The noise stability of f is defined as

Stabρ(f) = E(x,y)[f(x)f(y)] (15.5.1)

In particular, for f : {−1, 1}n → {−1, 1}, we have

Stabρ(f) = 2P(x,y)[f(x) = f(y)]− 1 (15.5.2)

Trivially, constant functions have stability 1. The Fourier expansion of noise stability is given by

Stabρ(f) = E(x,y)[f(x)f(y)] = Ex∼Un [f(x)Trho(f)(x)] = 〈f, Tρ(f)〉 (15.5.3)

Using Plancherel’s Theorem 3.4, we obtain

Stabρ(f) = 〈f, Tρ(f)〉 =
∑
S⊆[n]

f̂(S)T̂ρ(f)(S) =
∑
S⊆[n]

f̂(S)2ρ|S| (15.5.4)

This implies that for f : {−1, 1}n → {−1, 1} that is unbiased, i.e., f̂(∅) = 0, we have

Stabρ(f) =
∑
S⊆[n]

f̂(S)2ρ|S| =
∑
S 6=∅

f̂(S)2ρ|S| ≤ ρ
∑
S 6=∅

f̂(S)2 ≤ ρ (15.5.5)

Example 15.19. Dictator function is noise stable. Stabρ(xi) = ρ. Observe that this matches the lower bound of
unbiased functions f . Specifically,

Stabρ(f) =
∑
S 6=∅

f̂(S)2ρ|S| = ρ (15.5.6)

if and only if f̂(S) = 0 for all S with |S| > 1.

In fact, we have the following proposition.

Proposition 15.20. Let f : {−1, 1}n → {−1, 1} with f̂(S) = 0 for all |S| > 1. Then f is either constant, a
dictator function xi, or an anti-dictator function −xi.

If we require that the individual influence of a bit is not too large, i.e., Inf[f ] is small, then majority function
is the "stablest".

Example 15.21. Majority function is also noise stable.

Stabρ(MAJ) ∼

{
2
nρ when ρ is close to 0
1− o(

√
1− ρ when ρ is close to 1

(15.5.7)
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Definition 15.22. For f : {−1, 1}n → R, we first sample x ∼ Un and obtain y from x by flipping each bit
independently with probability 0 ≥ δ ≤ 1. The noise sensitivity of f is defined as

NSδ(f) = P[f(x) 6= f(y)] =
1

2
− 1

2
Stab1−2δ(f) (15.5.8)

Intuitively, f is "noise stable" if its value changes with small probability; on the other hand, f is "noise
sensitive" if its value changes with large probability.

Example 15.23. Parity function is noise sensitive.

Stabρ(χ[n]) = E(x,y)[
∏
i

xiyi] =
∏
i

E(x,y)[xiyi] = ρn

NSδ(χ[n]) =
1

2
− 1

2
Stab1−2δ(χ[n]) =

1

2

(
1− (1− 2δ)n

) (15.5.9)
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